Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Dev Biol ; 458(2): 215-227, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751550

RESUMO

In ascidian embryos, the earliest transcription from the zygotic genome begins between the 8-cell and 16-cell stages. Gata.a, a maternally expressed Gata transcription factor, activates target genes specifically in the animal hemisphere, whereas the complex of ß-catenin and Tcf7 antagonizes the activity of Gata.a and activates target genes specifically in the vegetal hemisphere. Here, we show that genes zygotically expressed at the 16-cell stage have significantly more Gata motifs in their upstream regions. These genes included not only genes with animal hemisphere-specific expression but also genes with vegetal hemisphere-specific expression. On the basis of this finding, we performed knockdown experiments for Gata.a and reporter assays, and found that Gata.a is required for the expression of not only genes with animal hemisphere-specific expression, but also genes with vegetal hemisphere-specific expression. Our data indicated that weak Gata.a activity that cannot induce animal hemisphere-specific expression can allow ß-catenin/Tcf7 targets to be expressed in the vegetal cells. Because genes zygotically expressed at the 32-cell stage also had significantly more Gata motifs in their upstream regions, Gata.a function may not be limited to the genes expressed specifically in the animal or vegetal hemispheres at the 16-cell stage, and Gata.a may play an important role in the earliest transcription of the zygotic genome.


Assuntos
Ciona intestinalis/embriologia , Fatores de Transcrição GATA/metabolismo , Animais , Padronização Corporal/genética , Ciona intestinalis/metabolismo , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Urocordados/embriologia , Zigoto/metabolismo
2.
Dev Biol ; 448(2): 173-182, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059669

RESUMO

Tadpole larvae of the ascidian, Halocynthia roretzi, show morphological left-right asymmetry in the brain structures and the orientation of tail bending within the vitelline membrane. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and then this rotation stops when the left side of the embryo is oriented downwards. Contact of the left-side epidermis with the vitelline membrane promotes nodal gene expression in the left-side epidermis. This is a novel mechanism in which rotation of whole embryos provides the initial cue for breaking left-right symmetry. Here we show that epidermal monocilia, which appear at the neurula rotation stage, generate the driving force for rotation. A ciliary protein, Arl13b, fused with Venus YFP was used for live imaging of ciliary movements. Although overexpression of wild-type Arl13b fusion protein resulted in aberrant movements of the cilia and abrogation of neurula rotation, mutant Arl13b fusion protein, in which the GTPase and coiled-coil domains were removed, did not affect the normal ciliary movements and neurula rotation. Epidermis cilia moved in a wavy and serpentine way like sperm flagella but not in a rotational way or beating way with effective stroke and recovery stroke. They moved very slowly, at 1/7 Hz, consistent with the low angular velocity of neurula rotation (ca. 43°/min). The tips of most cilia pointed in the opposite direction of embryonic rotation. Similar motility was also observed in Ciona robusta embryos. When embryos were treated with a dynein inhibitor, Ciliobrevin D, both ciliary movements and neurula rotation were abrogated, showing that ciliary movements drive neurula rotation in Halocynthia. The drug also inhibited Ciona neurula rotation. Our observations suggest that the driving force of rotation is generated using the vitelline membrane as a substrate but not by making a water current around the embryo. It is of evolutionary interest that ascidians use ciliary movements to break embryonic left-right symmetry, like in many vertebrates. Meanwhile, ascidian embryos rotate as a whole, similar to embryos of non-vertebrate deuterostomes, such as echinoderm, hemichordate, and amphioxus, while swimming.


Assuntos
Padronização Corporal , Cílios/fisiologia , Embrião de Mamíferos/metabolismo , Epiderme/embriologia , Movimento , Rotação , Urocordados/embriologia , Animais , Dineínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
Development ; 144(1): 33-37, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888190

RESUMO

Epidermis and neural tissues differentiate from the ectoderm in animal embryos. Although epidermal fate is thought to be induced in vertebrate embryos, embryological evidence has indicated that no intercellular interactions during early stages are required for epidermal fate in ascidian embryos. To test this hypothesis, we determined the gene regulatory circuits for epidermal and neural specification in the ascidian embryo. These circuits started with Tfap2-r.b and Sox1/2/3, which are expressed in the ectodermal lineage immediately after zygotic genome activation. Tfap2-r.b expression was diminished in the neural lineages upon activation of fibroblast growth factor signaling, which is known to induce neural fate, and sustained only in the epidermal lineage. Tfap2-r.b specified the epidermal fate cooperatively with Dlx.b, which was activated by Sox1/2/3 This Sox1/2/3-Dlx.b circuit was also required for specification of the anterior neural fate. In the posterior neural lineage, Sox1/2/3 activated Nodal, which is required for specification of the posterior neural fate. Our findings support the hypothesis that the epidermal fate is specified autonomously in ascidian embryos.


Assuntos
Ciona intestinalis/embriologia , Ectoderma/embriologia , Fatores de Transcrição SOXB1/fisiologia , Fator de Transcrição AP-2/fisiologia , Urocordados/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Ciona intestinalis/genética , Ectoderma/metabolismo , Embrião não Mamífero , Epiderme/embriologia , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Urocordados/genética
4.
Development ; 143(22): 4167-4172, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707797

RESUMO

Many animal embryos use nuclear ß-catenin (nß-catenin) during the segregation of endomesoderm (or endoderm) from ectoderm. This mechanism is thus likely to be evolutionarily ancient. In the ascidian embryo, nß-catenin reiteratively drives binary fate decisions between ectoderm and endomesoderm at the 16-cell stage, and then between endoderm and margin (mesoderm and caudal neural) at the 32-cell stage. At the 16-cell stage, nß-catenin activates endomesoderm genes in the vegetal hemisphere. At the same time, nß-catenin suppresses the DNA-binding activity of a maternal transcription factor, Gata.a, through a physical interaction, and Gata.a thereby activates its target genes only in the ectodermal lineage. In the present study, we found that this antagonism between nß-catenin and Gata.a also operates during the binary fate switch at the 32-cell stage. Namely, in marginal cells where nß-catenin is absent, Gata.a directly activates its target, Zic-r.b (ZicL), to specify the marginal cell lineages. Thus, the antagonistic action between nß-catenin and Gata.a is involved in two consecutive stages of germ layer segregation in ascidian embryos.


Assuntos
Padronização Corporal/genética , Ciona intestinalis/embriologia , Fator de Transcrição GATA1/antagonistas & inibidores , Camadas Germinativas/embriologia , beta Catenina/antagonistas & inibidores , Animais , Animais Geneticamente Modificados , Linhagem da Célula/genética , Ciona intestinalis/genética , Embrião não Mamífero , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Urocordados/embriologia , Urocordados/genética , beta Catenina/genética
6.
Adv Exp Med Biol ; 1046: 87-106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29442319

RESUMO

Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.


Assuntos
Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Família Multigênica/fisiologia , Fatores de Transcrição , Urocordados , Dedos de Zinco/fisiologia , Animais , Gastrulação/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Urocordados/embriologia , Urocordados/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-25748582

RESUMO

Transcriptional control of gene expression is one of the most important regulatory systems in animal development. Specific gene expression is basically determined by combinatorial regulation mediated by multiple sequence-specific transcription factors. The decoding of animal genomes has provided an opportunity for us to systematically examine gene regulatory networks consisting of successive layers of control of gene expression. It remains to be determined to what extent combinatorial regulation encoded in gene regulatory networks can explain spatial and temporal gene-expression patterns. The ascidian Ciona intestinalis is one of the animals in which the gene regulatory network has been most extensively studied. In this species, most specific gene expression patterns in the embryo can be explained by combinations of upstream regulatory genes encoding transcription factors and signaling molecules. Systematic scrutiny of gene expression patterns and regulatory interactions at the cellular resolution have revealed incomplete parts of the network elucidated so far, and have identified novel regulatory genes and novel regulatory mechanisms.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes , Animais , Ectoderma/citologia , Ectoderma/metabolismo , Evolução Molecular , Mães
8.
Development ; 137(10): 1613-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20392745

RESUMO

Precise spatiotemporal gene expression during animal development is achieved through gene regulatory networks, in which sequence-specific transcription factors (TFs) bind to cis-regulatory elements of target genes. Although numerous cis-regulatory elements have been identified in a variety of systems, their global architecture in the gene networks that regulate animal development is not well understood. Here, we determined the structure of the core networks at the cis-regulatory level in early embryos of the chordate Ciona intestinalis by chromatin immunoprecipitation (ChIP) of 11 TFs. The regulatory systems of the 11 TF genes examined were tightly interconnected with one another. By combining analysis of the ChIP data with the results of previous comprehensive analyses of expression profiles and knockdown of regulatory genes, we found that most of the previously determined interactions are direct. We focused on cis-regulatory networks responsible for the Ciona mesodermal tissues by examining how the networks specify these tissues at the level of their cis-regulatory architecture. We also found many interactions that had not been predicted by simple gene knockdown experiments, and we showed that a significant fraction of TF-DNA interactions make major contributions to the regulatory control of target gene expression.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Redes Reguladoras de Genes/fisiologia , Sequências Reguladoras de Ácido Nucleico/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica/fisiologia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo
9.
Dev Cell ; 56(21): 2966-2979.e10, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34672970

RESUMO

Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/fisiologia , Indução Embrionária/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Ciona intestinalis/citologia , Ciona intestinalis/embriologia , Ectoderma/citologia , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
10.
Biochim Biophys Acta ; 1789(4): 268-73, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18424276

RESUMO

Ascidians, or sea squirts, are tunicates that diverged from the vertebrate lineage early in the chordate evolution. The compact and simple organization of the ascidian genome makes this organism an ideal model system for analyzing gene regulatory networks in embryonic development. Embryos contain relatively few cells and gene activities by individual cells have been determined. Here we review and discuss advances in our understanding of the ascidian embryogenesis emerging from genomic expression studies and analyses at the single cell level.


Assuntos
Embrião não Mamífero/metabolismo , Redes Reguladoras de Genes , Urocordados/embriologia , Urocordados/genética , Animais , Embrião não Mamífero/citologia
11.
Brief Funct Genomic Proteomic ; 8(4): 250-5, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19535506

RESUMO

Ascidians belong to the subphylum Urochordata or Tunicata, which is the sister group of the vertebrates. The simple architecture of the ascidian larva represents the basic chordate body plan. Recent analyses have shown many instances of developmental mechanisms conserved during evolution, while these studies have also revealed a much larger number of instances of divergence. However, to precisely determine the degree of conservation and divergence, that is, how many ways are used to make tadpole-like larvae, we need a systems-level understanding of development. Because animal development is organized by the genome and the minimal functional unit of development is a cell, comprehensiveness and single-cell resolution are necessary for a systems-biological understanding of the development. In the ascidian Ciona intestinalis, gene-regulatory networks responsible for the embryonic development have been studied on a genome-wide scale and at single-cell resolution. The simplicity and compactness of the genome facilitates genome-wide studies. In the Ciona genome, only approximately 670 transcription factor genes are encoded, and their expression profiles during the embryonic development have been analyzed. Gene-knockdown analyses of the transcription factor genes expressed during the embryonic development have been performed. The simplicity of the embryo permits these analyses to be done at single-cell resolution. Actually, these simple embryos are now being modeled in the computer, which allows us to understand the gene-regulatory networks very precisely in three dimensions.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero/metabolismo , Redes Reguladoras de Genes , Animais , Ciona intestinalis/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Sequências Reguladoras de Ácido Nucleico/genética
12.
Genome Biol ; 19(1): 98, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045756

RESUMO

BACKGROUND: What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS: We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS: Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.


Assuntos
Genoma , Anfioxos/genética , Filogenia , Urocordados/genética , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Animais , Evolução Biológica , Bases de Dados Genéticas , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Humanos , Anfioxos/classificação , Urocordados/classificação , Proteínas Wnt/classificação
13.
Mech Dev ; 119 Suppl 1: S275-7, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14516697

RESUMO

The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.


Assuntos
Rombencéfalo , Urocordados , Animais , Sistema Nervoso Central , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo , Dados de Sequência Molecular , Urocordados/genética
14.
Nat Commun ; 6: 8719, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515371

RESUMO

Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate.


Assuntos
Urocordados/crescimento & desenvolvimento , Urocordados/genética , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Proteínas/genética , Proteínas/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Urocordados/citologia , Urocordados/metabolismo
15.
Gene Expr Patterns ; 2(3-4): 319-21, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12617820

RESUMO

The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.


Assuntos
Encéfalo/embriologia , Proteínas Nucleares , Urocordados/embriologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Fatores de Transcrição Otx , Fator de Transcrição PAX2 , Fator de Transcrição PAX5 , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Urocordados/genética , Urocordados/metabolismo
16.
Science ; 337(6097): 964-7, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22923581

RESUMO

The function of bone morphogenetic protein (BMP) signaling in dorsoventral (DV) patterning of animal embryos is conserved among Bilateria. In vertebrates, the BMP ligand antidorsalizing morphogenetic protein (Admp) is expressed dorsally and moves to the opposite side to specify the ventral fate. Here, we show that Pinhead is an antagonist specific for Admp with a role in establishing the DV axis of the trunk epidermis in embryos of the ascidian Ciona intestinalis. Pinhead and Admp exist in tandem in the genomes of various animals from arthropods to vertebrates. This genomic configuration is important for mutually exclusive expression of these genes, because Pinhead transcription directly disturbs the action of the Admp enhancer. Our data suggest that this dual negative regulatory mechanism is widely conserved in animals.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/genética , Ciona intestinalis/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Epiderme/embriologia , Gástrula/metabolismo , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos Antissenso , Oryzias/embriologia , Oryzias/genética , Oryzias/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
17.
Development ; 136(2): 285-93, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19088089

RESUMO

The tripartite organization of the central nervous system (CNS) may be an ancient character of the bilaterians. However, the elaboration of the more complex vertebrate brain depends on the midbrain-hindbrain boundary (MHB) organizer, which is absent in invertebrates such as Drosophila. The Fgf8 signaling molecule expressed in the MHB organizer plays a key role in delineating separate mesencephalon and metencephalon compartments in the vertebrate CNS. Here, we present evidence that an Fgf8 ortholog establishes sequential patterns of regulatory gene expression in the developing posterior sensory vesicle, and the interleaved ;neck' region located between the sensory vesicle and visceral ganglion of the simple chordate Ciona intestinalis. The detailed characterization of gene networks in the developing CNS led to new insights into the mechanisms by which Fgf8/17/18 patterns the chordate brain. The precise positioning of this Fgf signaling activity depends on an unusual AND/OR network motif that regulates Snail, which encodes a threshold repressor of Fgf8 expression. Nodal is sufficient to activate low levels of the Snail repressor within the neural plate, while the combination of Nodal and Neurogenin produces high levels of Snail in neighboring domains of the CNS. The loss of Fgf8 patterning activity results in the transformation of hindbrain structures into an expanded mesencephalon in both ascidians and vertebrates, suggesting that the primitive MHB-like activity predates the vertebrate CNS.


Assuntos
Sistema Nervoso Central/embriologia , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Redes Reguladoras de Genes , Animais , Padronização Corporal/genética , Sistema Nervoso Central/metabolismo , Ciona intestinalis/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Perfilação da Expressão Gênica , Genes Homeobox , Genes Reguladores , Transdução de Sinais , Especificidade da Espécie , Tretinoína/metabolismo , Vertebrados/embriologia , Vertebrados/genética
18.
Science ; 312(5777): 1183-7, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16728634

RESUMO

Ciona is an emerging model system for elucidating gene networks in development. Comprehensive in situ hybridization assays have identified 76 regulatory genes with localized expression patterns in the early embryo, at the time when naïve blastomeres are determined to follow specific cell fates. Systematic gene disruption assays provided more than 3000 combinations of gene expression profiles in mutant backgrounds. Deduced gene circuit diagrams describing the formation of larval tissues were computationally visualized. These diagrams constitute a blueprint for the Ciona embryo and provide a foundation for understanding the evolutionary origins of the chordate body plan.


Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética , Animais , Evolução Biológica , Blastômeros/citologia , Blastômeros/fisiologia , Padronização Corporal/genética , Diferenciação Celular/genética , Linhagem da Célula , Biologia Computacional , Células Epidérmicas , Gástrula/citologia , Gástrula/fisiologia , Perfilação da Expressão Gênica , Genes Reguladores , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/citologia , Proteína Nodal , Notocorda/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/fisiologia , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/fisiologia
19.
Differentiation ; 71(6): 346-60, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12919104

RESUMO

Nuclear localization of beta-catenin is most likely the first step of embryonic axis formation or embryonic cell specification in a wide variety of animal groups. Therefore, the elucidation of beta-catenin target genes is a key research subject in understanding the molecular mechanisms of the early embryogenesis of animals. In Ciona savignyi embryos, nuclear accumulation of beta-catenin is the first step of endodermal cell specification. Previous subtractive hybridization screens of mRNAs between beta-catenin-overexpressed embryos and nuclear beta-catenin-depleted embryos have resulted in the identification of beta-catenin downstream genes in Ciona embryos. In the present study, I characterize seven additional beta-catenin downstream genes, Cs-cadherinII, Cs-protocadherin, Cs-Eph, Cs-betaCD1, Cs-netrin, Cs-frizzled3/6, and Cs-lefty/antivin. All of these genes were expressed in vegetal blastomeres between the 16-cell and 110-cell stages, although their spatial and temporal expression patterns were different from one another. In situ hybridizations and real-time PCR revealed that the expression of all of these genes was up-regulated in beta-catenin-overexpressed embryos, and down-regulated in beta-catenin-suppressed embryos. Therefore, the accumulation of beta-catenin in the nuclei of vegetal blastomeres activates various vegetally expressed genes with potentially important functions in the specification of these cells.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Transativadores/química , Transativadores/genética , Urocordados/embriologia , Urocordados/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem da Célula , Sequência Conservada , Proteínas do Citoesqueleto/isolamento & purificação , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Modelos Biológicos , Dados de Sequência Molecular , Morfolinas , Reação em Cadeia da Polimerase , Estrutura Terciária de Proteína , RNA Mensageiro/análise , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transativadores/isolamento & purificação , beta Catenina
20.
Development ; 129(11): 2723-32, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12015299

RESUMO

Multiple functions of a Zic-like zinc finger transcription factor gene (Cs-ZicL) were identified in Ciona savignyi embryos. cDNA clones for Cs-ZicL, a beta-catenin downstream genes, were isolated and the gene was transiently expressed in the A-line notochord/nerve cord lineage and in B-line muscle lineage from the 32-cell stage and later in a-line CNS lineage from the 110-cell stage. Suppression of Cs-ZicL function with specific morpholino oligonucleotide indicated that Cs-ZicL is essential for the formation of A-line notochord cells but not of B-line notochord cells, essential for the CNS formation and essential for the maintenance of muscle differentiation. The expression of Cs-ZicL in the A-line cells is downstream of beta-catenin and a beta-catenin-target gene, Cs-FoxD, which is expressed in the endoderm cells from the 16-cell stage and is essential for the differentiation of notochord. In spite of its pivotal role in muscle specification, the expression of Cs-ZicL in the muscle precursors is independent of Cs-macho1, which is another Zic-like gene encoding a Ciona maternal muscle determinant, suggesting another genetic cascade for muscle specification independent of Cs-macho1. Cs-ZicL may provide a future experimental system to explore how the gene expression in multiple embryonic regions is controlled and how the single gene can perform different functions in multiple types of embryonic cells.


Assuntos
Embrião não Mamífero/fisiologia , Músculo Esquelético/embriologia , Sistema Nervoso/embriologia , Notocorda/citologia , Fatores de Transcrição/genética , Urocordados/embriologia , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , DNA Complementar , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/citologia , Sistema Nervoso/citologia , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Xenopus , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA