Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2122523119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36112647

RESUMO

T cell intracellular antigen-1 (TIA-1) plays a central role in stress granule (SG) formation by self-assembly via the prion-like domain (PLD). In the TIA-1 PLD, amino acid mutations associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Welander distal myopathy (WDM), have been identified. However, how these mutations affect PLD self-assembly properties has remained elusive. In this study, we uncovered the implicit pathogenic structures caused by the mutations. NMR analysis indicated that the dynamic structures of the PLD are synergistically determined by the physicochemical properties of amino acids in units of five residues. Molecular dynamics simulations and three-dimensional electron crystallography, together with biochemical assays, revealed that the WDM mutation E384K attenuated the sticky properties, whereas the ALS mutations P362L and A381T enhanced the self-assembly by inducing ß-sheet interactions and highly condensed assembly, respectively. These results suggest that the P362L and A381T mutations increase the likelihood of irreversible amyloid fibrillization after phase-separated droplet formation, and this process may lead to pathogenicity.


Assuntos
Aminoácidos , Esclerose Lateral Amiotrófica , Príons , Agregação Patológica de Proteínas , Antígeno-1 Intracelular de Células T , Aminoácidos/química , Aminoácidos/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Humanos , Mutação , Príons/química , Agregação Patológica de Proteínas/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Antígeno-1 Intracelular de Células T/química , Antígeno-1 Intracelular de Células T/genética
2.
Curr Issues Mol Biol ; 46(4): 3579-3594, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38666954

RESUMO

Although endometriosis is a benign disease, it is associated with cancer-related gene mutations, such as KRAS or PIK3CA. Endometriosis is associated with elevated levels of inflammatory factors that cause severe pain. In a previous study, we demonstrated that KRAS or PIK3CA mutations are associated with the activation of cell proliferation, migration, and invasion in a patient-derived immortalized endometriotic cell line, HMOsisEC10. In this study, we investigated the effects of these mutations on progesterone resistance. Since the HMOsisEC10 had suppressed progesterone receptor (PR) expression, we transduced PR-B to HMOsisEc10 cell lines including KRAS mutant and PIK3CA mutant cell lines. We conducted a migration assay, invasion assay, and MTT assay using dienogest and medroxyprogestrone acetate. All cell lines showed progesterone sensitivity with or without mutations. Regarding inflammatory factors, real-time quantitative RT-PCR revealed that the KRAS mutation cell line exhibited no suppression of Cox-2 and mPGES-1 on progesterone treatment, whereas IL-6, MCP-1, VEGF, and CYP19A1 were significantly suppressed by progesterone in both mutated cell lines. Our results suggest that KRAS mutation and PIK3CA mutation in endometriotic cells may not be associated with progesterone resistance in terms of aggressiveness. However, KRAS mutations may be associated with progesterone resistance in the context of pain.

3.
Reprod Med Biol ; 23(1): e12574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590943

RESUMO

Purpose: To examine the association between semen characteristics and outcomes of intrauterine insemination (IUI). Methods: This retrospective analysis examined 1380 IUI procedures involving 421 couples. The association of clinical pregnancy with pre- and post-wash sperm characteristics was assessed. Results: Pre- and post-wash sperm characteristics did not differ between IUI cycles that resulted in pregnancy and those that did not. When the motility of pre-wash sperm was below the normal range (<42%) established by the World Health Organization (WHO), the pregnancy rate was significantly lower. In the IUI cycles when post-wash sperm motility was below the WHO standard, pregnancy was not achieved. The frequency of improvement in post-wash sperm motility in repeated IUI cycles appeared to correlate with the success of future IUI cycles. At the fourth IUI cycle, pregnancy was not achieved unless the post-wash sperm motility was normal in at least two of three attempts. When post-wash sperm concentration was below the normal range, the woman's age did not affect the IUI outcomes. Conclusions: Sperm motility above the lower limit of the WHO criteria in post-wash semen samples is an important factor in IUI outcomes.

4.
J Am Soc Nephrol ; 30(9): 1587-1603, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266820

RESUMO

BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestrutura , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Actinas/ultraestrutura , Animais , Sítios de Ligação , Calmodulina/genética , Mutação com Ganho de Função , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Podócitos , Domínios Proteicos , Canal de Cátion TRPC6/ultraestrutura
5.
Structure ; 32(3): 352-361.e5, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38194963

RESUMO

Orexin neuropeptides have many physiological roles in the sleep-wake cycle, feeding behavior, reward demands, and stress responses by activating cognitive receptors, the orexin receptors (OX1R and OX2R), distributed in the brain. There are only subtle differences between OX1R and OX2R in the orthosteric site, which has hindered the rational development of subtype-selective antagonists. In this study, we utilized solution-state NMR to capture the structural plasticity of OX2R labeled with 13CH3-ε-methionine in complex with antagonists. Mutations in the orthosteric site allosterically affected the intracellular tip of TM6. Ligand exchange experiments with the subtype-selective EMPA and the nonselective suvorexant identified three methionine residues that were substantially perturbed. The NMR spectra suggested that the suvorexant-bound state exhibited more structural plasticity than the EMPA-bound state, which has not been foreseen from the close similarity of their crystal structures, providing insights into dynamic features to be considered in understanding the ligand recognition mode.


Assuntos
Metionina , Humanos , Orexinas , Ligantes , Receptores de Orexina/genética , Receptores de Orexina/química , Espectroscopia de Ressonância Magnética
6.
J Biol Chem ; 287(6): 4288-98, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22170059

RESUMO

Thymine glycol (Tg) and 5-hydroxyuracil (5-OHU) are common oxidized products of pyrimidines, which are recognized and cleaved by two DNA glycosylases of the base excision repair pathway, endonuclease III (Nth) and endonuclease VIII (Nei). Although there are several structures of Nei enzymes unliganded or bound to an abasic (apurinic or apyrimidinic) site, until now there was no structure of an Nei bound to a DNA lesion. Mimivirus Nei1 (MvNei1) is an ortholog of human NEIL1, which was previously crystallized bound to DNA containing an apurinic site (Imamura, K., Wallace, S. S., and Doublié, S. (2009) J. Biol. Chem. 284, 26174-26183). Here, we present two crystal structures of MvNei1 bound to two oxidized pyrimidines, Tg and 5-OHU. Both lesions are flipped out from the DNA helix. Tg is in the anti conformation, whereas 5-OHU adopts both anti and syn conformations in the glycosylase active site. Only two protein side chains (Glu-6 and Tyr-253) are within hydrogen-bonding contact with either damaged base, and mutating these residues did not markedly affect the glycosylase activity. This finding suggests that lesion recognition by Nei occurs before the damaged base flips into the glycosylase active site.


Assuntos
DNA Glicosilases/química , DNA/química , Timina/análogos & derivados , Uracila/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mimiviridae/enzimologia , Oxirredução , Timina/química , Uracila/química
7.
J Biol Chem ; 284(38): 26174-83, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19625256

RESUMO

Endonuclease VIII (Nei) is a DNA glycosylase of the base excision repair pathway that recognizes and excises oxidized pyrimidines. We determined the crystal structures of a NEIL1 ortholog from the giant Mimivirus (MvNei1) unliganded and bound to DNA containing tetrahydrofuran (THF), which is the first structure of any Nei with an abasic site analog. The MvNei1 structures exhibit the same overall architecture as other enzymes of the Fpg/Nei family, which consists of two globular domains joined by a linker region. MvNei1 harbors a zincless finger, first described in human NEIL1, rather than the signature zinc finger generally found in the Fpg/Nei family. In contrast to Escherichia coli Nei, where a dramatic conformational change was observed upon binding DNA, the structure of MvNei1 bound to DNA does not reveal any substantial movement compared with the unliganded enzyme. A protein segment encompassing residues 217-245 in MvNei1 corresponds to the "missing loop" in E. coli Nei and the "alphaF-beta10 loop" in E. coli Fpg, which has been reported to be involved in lesion recognition. Interestingly, the corresponding loop in MvNei1 is ordered in both the unliganded and furan-bound structures, unlike other Fpg/Nei enzymes where the loop is generally ordered in the unliganded enzyme or in complexes with a lesion, and disordered otherwise. In the MvNei1.tetrahydrofuran complex a tyrosine located at the tip of the putative lesion recognition loop stacks against the furan ring; the tyrosine is predicted to adopt a different conformation to accommodate a modified base.


Assuntos
Vírus de DNA/enzimologia , DNA Viral/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Proteínas Virais/química , Acanthamoeba/virologia , Animais , Cristalografia por Raios X , DNA Viral/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo , Dedos de Zinco/fisiologia
8.
Protein Sci ; 29(10): 2085-2100, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808707

RESUMO

Starch produced by plants is a stored form of energy and is an important dietary source of calories for humans and domestic animals. Disproportionating enzyme (D-enzyme) catalyzes intramolecular and intermolecular transglycosylation reactions of α-1, 4-glucan. D-enzyme is essential in starch metabolism in the potato. We present the crystal structures of potato D-enzyme, including two different types of complex structures: a primary Michaelis complex (substrate binding mode) for 26-meric cycloamylose (CA26) and a covalent intermediate for acarbose. Our study revealed that the acarbose and CA26 reactions catalyzed by potato D-enzyme involve the formation of a covalent intermediate with the donor substrate. HPAEC of reaction substrates and products revealed the activity of the potato D-enzyme on acarbose and CA26 as donor substrates. The structural and chromatography analyses provide insight into the mechanism of the coupling reaction of CA and glucose catalyzed by the potato D-enzyme. The enzymatic reaction mechanism does not involve residual hydrolysis. This could be particularly useful in preventing unnecessary starch degradation leading to reduced crop productivity. Optimization of this mechanism would be important for improvements of starch storage and productivity in crops.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Proteínas de Plantas/química , Solanum tuberosum/enzimologia , Amido/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Proteínas de Plantas/genética , Domínios Proteicos , Solanum tuberosum/genética , Amido/genética , Amido/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-16508106

RESUMO

Disproportionating enzyme (D-enzyme; EC 2.4.1.25) is a 59 kDa protein that belongs to the alpha-amylase family. D-enzyme catalyses intramolecular and intermolecular transglycosylation reactions of alpha-1,4 glucan. A crystal of the D-enzyme from potato was obtained by the hanging-drop vapour-diffusion method. Preliminary X-ray data showed that the crystal diffracts to 2.0 A resolution and belongs to space group C222(1), with unit-cell parameters a = 69.7, b = 120.3, c = 174.2 A.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/química , Solanum tuberosum/enzimologia , Sequência de Bases , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Primers do DNA , Sistema da Enzima Desramificadora do Glicogênio/isolamento & purificação , Glicosilação , Proteínas de Plantas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Difração de Raios X
11.
Structure ; 21(2): 247-56, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23313161

RESUMO

Endonuclease VIII-like 3 (Neil3) is a DNA glycosylase of the base excision repair pathway that protects cells from oxidative DNA damage by excising a broad spectrum of cytotoxic and mutagenic base lesions. Interestingly, Neil3 exhibits an unusual preference for DNA with single-stranded regions. Here, we report the 2.0 Å crystal structure of a Neil3 enzyme. Although the glycosylase region of mouse Neil3 (MmuNeil3Δ324) exhibits the same overall fold as that of other Fpg/Nei proteins, it presents distinct structural features. First, MmuNeil3Δ324 lacks the αF-ß9/10 loop that caps the flipped-out 8-oxoG in bacterial Fpg, which is consistent with its inability to cleave 8-oxoguanine. Second, Neil3 not only lacks two of the three void-filling residues that stabilize the opposite strand, but it also harbors negatively charged residues that create an unfavorable electrostatic environment for the phosphate backbone of that strand. These structural features provide insight into the substrate specificity and marked preference of Neil3 for ssDNA.


Assuntos
DNA de Cadeia Simples/química , Endodesoxirribonucleases/química , Motivos de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato , Propriedades de Superfície
12.
DNA Repair (Amst) ; 12(12): 1062-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24120312

RESUMO

Assault to DNA that leads to oxidative base damage is repaired by the base excision repair (BER) pathway with specialized enzymes called DNA glycosylases catalyzing the first step of this pathway. These glycosylases can be categorized into two families: the HhH superfamily, which includes endonuclease III (or Nth), and the Fpg/Nei family, which comprises formamidopyrimidine DNA glycosylase (or Fpg) and endonuclease VIII (or Nei). In humans there are three Nei-like (NEIL) glycosylases: NEIL1, 2, and 3. Here we present the first crystal structure of a viral ortholog of the human NEIL2/NEIL3 proteins, Mimivirus Nei2 (MvNei2), determined at 2.04Å resolution. The C-terminal region of the MvNei2 enzyme comprises two conserved DNA binding motifs: the helix-two-turns-helix (H2TH) motif and a C-H-C-C type zinc-finger similar to that of human NEIL2. The N-terminal region of MvNei2 is most closely related to NEIL3. Like NEIL3, MvNei2 bears a valine at position 2 instead of the usual proline and it lacks two of the three conserved void-filling residues present in other members of the Fpg/Nei family. Mutational analysis of the only conserved void-filling residue methionine 72 to alanine yields an MvNei2 variant with impaired glycosylase activity. Mutation of the adjacent His73 causes the enzyme to be more productive thereby suggesting a plausible role for this residue in the DNA lesion search process.


Assuntos
DNA Glicosilases/química , DNA Glicosilases/metabolismo , Mimiviridae/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Dedos de Zinco , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Sequência Consenso , Cristalografia por Raios X , Dano ao DNA/genética , DNA Glicosilases/genética , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Mimiviridae/genética , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA