Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood Cells Mol Dis ; 51(4): 256-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103835

RESUMO

Many physiologic processes during the early stages of mammalian ontogeny, particularly placental and vascular development, take place in the low oxygen environment of the uterus. Organogenesis is affected by hypoxia inducible factor (HIF) transcription factors that are sensors of hypoxia. In response to hypoxia, HIFs activate downstream target genes - growth and metabolism factors. During hematopoietic system ontogeny, blood cells and hematopoietic progenitor/stem cells are respectively generated from mesodermal precursors, hemangioblasts, and from a specialized subset of endothelial cells that are hemogenic. Since HIFs are known to play a central role in vascular development, and hematopoietic system development occurs in parallel to that of the vascular system, several studies have examined the role of HIFs in hematopoietic development. The response to hypoxia has been examined in early and mid-gestation mouse embryos through genetic deletion of HIF subunits. We review here the data showing that hematopoietic tissues of the embryo are hypoxic and express HIFs and HIF downstream targets, and that HIFs regulate the development and function of hematopoietic progenitor/stem cells.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Animais , Medula Óssea/metabolismo , Hipóxia Celular , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Humanos , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Consumo de Oxigênio , Placenta/embriologia , Placenta/metabolismo , Gravidez , Nicho de Células-Tronco/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Cancer Discov ; 12(6): 1542-1559, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35412613

RESUMO

Cancer cells depend on multiple driver alterations whose oncogenic effects can be suppressed by drug combinations. Here, we provide a comprehensive resource of precision combination therapies tailored to oncogenic coalterations that are recurrent across patient cohorts. To generate the resource, we developed Recurrent Features Leveraged for Combination Therapy (REFLECT), which integrates machine learning and cancer informatics algorithms. Using multiomic data, the method maps recurrent coalteration signatures in patient cohorts to combination therapies. We validated the REFLECT pipeline using data from patient-derived xenografts, in vitro drug screens, and a combination therapy clinical trial. These validations demonstrate that REFLECT-selected combination therapies have significantly improved efficacy, synergy, and survival outcomes. In patient cohorts with immunotherapy response markers, DNA repair aberrations, and HER2 activation, we have identified therapeutically actionable and recurrent coalteration signatures. REFLECT provides a resource and framework to design combination therapies tailored to tumor cohorts in data-driven clinical trials and preclinical studies. SIGNIFICANCE: We developed the predictive bioinformatics platform REFLECT and a multiomics- based precision combination therapy resource. The REFLECT-selected therapies lead to significant improvements in efficacy and patient survival in preclinical and clinical settings. Use of REFLECT can optimize therapeutic benefit through selection of drug combinations tailored to molecular signatures of tumors. See related commentary by Pugh and Haibe-Kains, p. 1416. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Neoplasias , Oncogenes , Carcinogênese , Biologia Computacional/métodos , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
3.
PLoS One ; 13(2): e0192264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29389953

RESUMO

Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long non-coding RNA (lncRNA) that is a negative prognostic factor for patients with pancreatic cancer and several other tumors. In this study, we show that knockdown of MALAT-1 in Panc1 and other pancreatic cancer cell lines decreases cell proliferation, survival and migration. We previously observed similar results for the lncRNAs HOTTIP and HOTAIR in Panc1 cells; however, RNAseq comparison of genes regulated by MALAT-1 shows minimal overlap with HOTTIP/HOTAIR-regulated genes. Analysis of changes in gene expression after MALAT-1 knockdown shows that this lncRNA represses several tumor suppressor-like genes including N-myc downregulated gene-1 (NDRG-1), a tumor suppressor in pancreatic cancer that is also corepressed by EZH2 (a PRC2 complex member). We also observed that Specificity proteins Sp1, Sp3 and Sp4 are overexpressed in Panc1 cells and Sp knockdown or treatment with small molecules that decrease Sp proteins expression also decrease MALAT-1 expression. We also generated Kras-overexpressing p53L/L;LSL-KrasG12DL/+;p48Cre+/- (p53L/L/KrasG12D) and p53L/+;LSLKrasG12DL/+;p48Cre+/- (p53L/+/KrasG12D) mice which are p53 homo- and heterozygous, respectively. These mice rapidly develop pancreatic ductal adenocarcinoma-like tumors and were crossed with MALAT-1-/- mice. We observed that the loss of one or two MALAT-1 alleles in these Ras overexpressing mice does not significantly affect the time to death; however, the loss of MALAT-1 in the p53-/+ (heterozygote) mice slightly increases their lifespan.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/genética
4.
Oncotarget ; 6(28): 26359-72, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317792

RESUMO

Specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1 cells, highly upregulated in liver cancer (HULC) was regulated not only by Sp1 but also Sp3 and Sp4 in the three cell lines. Knockdown of Sp transcription factors and HULC by RNAi showed that they play important roles in HCC cell proliferation, survival and migration. The relative contribution of Sp1, Sp3, Sp4 and HULC on these responses in HepG2, SNU-449 and SK-Hep-1 cells were cell context- and response-dependent. In the poorly differentiated SK-Hep-1 cells, knockdown of Sp1 or HULC resulted in genomic and morphological changes, indicating that Sp1 and Sp1-regulated HULC are important for maintaining the mesenchymal phenotype in this cell line. Genomic analysis showed an inverse correlation between expression of genes after knockdown of HULC and expression of those genes in liver tumors from patients. The antidiabetic drug metformin down-regulates Sp proteins in pancreatic cancer, and similar results including decreased HULC expression were observed in HepG2, SNU-449 and SK-Hep-1 cells treated with metformin, indicating that metformin and other antineoplastic agents that target Sp proteins may have clinical applications for HCC chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Metformina/farmacologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição Sp/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Fenótipo , Interferência de RNA , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição Sp/genética , Fatores de Tempo , Transfecção
5.
Expert Opin Ther Targets ; 18(7): 759-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793594

RESUMO

INTRODUCTION: Specificity protein (Sp) transcription factors (TFs) are members of the Sp/Kruppel-like factor family, and Sp proteins play an important role in embryonic and early postnatal development. Sp1 has been the most extensively investigated member of this family, and expression of this protein decreases with age, whereas Sp1 and other family members (Sp3 and Sp4) are highly expressed in tumors and cancer cell lines. AREA COVERED: The prognostic significance of Sp1 in cancer patients and the functional pro-oncogenic activities of Sp1, Sp3 and Sp4 in cancer cell lines are summarized. Several different approaches have been used to target downregulation of Sp TFs and Sp-regulated genes, and this includes identification of different structural classes of antineoplastic agents including NSAIDs, natural products and their synthetic analogs and several well-characterized drugs including arsenic trioxide, aspirin and metformin. The multiple pathways involved in drug-induced Sp downregulation are also discussed. EXPERT OPINION: The recognition by the scientific and clinical community that experimental and clinically used antineoplastic agents downregulate Sp1, Sp3 and Sp4, and pro-oncogenic Sp-regulated genes will facilitate future clinical applications for individual drug and drug combination therapies that take advantage of their unusual effects.


Assuntos
Neoplasias/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Regulação para Baixo , Humanos , Neoplasias/tratamento farmacológico
6.
Stem Cell Res ; 12(1): 24-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141110

RESUMO

Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC) function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α), a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver), and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO) approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs) are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.


Assuntos
Hipóxia Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Aorta/citologia , Caderinas/metabolismo , Separação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Feto/citologia , Transplante de Células-Tronco Hematopoéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Placenta/citologia , Gravidez , Transplante Homólogo
7.
Cell Stem Cell ; 5(4): 385-95, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19796619

RESUMO

Hematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emergence, HSCs are found in other anatomical sites of the mouse conceptus. While the mouse placenta contains abundant HSCs at midgestation, little is known concerning whether HSCs or hematopoietic progenitors are present and supported in the human placenta during development. In this study we show, over a range of developmental times including term, that the human placenta contains hematopoietic progenitors and HSCs. Moreover, stromal cell lines generated from human placenta at several developmental time points are pericyte-like cells and support human hematopoiesis. Immunostaining of placenta sections during development localizes hematopoietic cells in close contact with pericytes/perivascular cells. Thus, the human placenta is a potent hematopoietic niche throughout development.


Assuntos
Células-Tronco Hematopoéticas/citologia , Sistema Hematopoético/citologia , Placenta/citologia , Animais , Transplante de Células , Feminino , Citometria de Fluxo , Idade Gestacional , Humanos , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase , Gravidez
8.
Am J Med Genet A ; 143A(14): 1623-9, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17431902

RESUMO

Forty-five consanguineous Iranian families segregating autosomal recessive nonsyndromic hearing loss (ARNSHL) and negative for mutations at the DFNB1 locus were screened for allele segregation consistent with homozygosity by descent (HBD) at the DFNB21 locus. In three families demonstrating HBD at this locus, mutation screening of TECTA led to the identification of three novel homozygous mutations: one frameshift mutation (266delT), a transversion of a cytosine to an adenine (5,211C > A) leading to a stop codon, and a 9.6 kb deletion removing exon 10. In total, six mutations in TECTA have now been described in families segregating ARNSHL. All of these mutations are inactivating and produce a similar phenotype that is characterized by moderate-to-severe hearing loss across frequencies with a mid frequency dip. The truncating nature of these mutations is consistent with loss-of-function, and therefore the existing TECTA knockout mouse mutant represents a good model in which to study DFNB21-related deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genes Recessivos , Perda Auditiva Neurossensorial/genética , Glicoproteínas de Membrana/genética , Mutação , Audiometria , Sequência de Bases , Conexina 26 , Conexinas , Consanguinidade , Análise Mutacional de DNA , Saúde da Família , Proteínas Ligadas por GPI , Genótipo , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Irã (Geográfico) , Linhagem , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA