Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Adv Exp Med Biol ; 1273: 91-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119877

RESUMO

Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.


Assuntos
Neoplasias/imunologia , Subpopulações de Linfócitos T/citologia , Microambiente Tumoral/imunologia , Butirofilinas/imunologia , Diferenciação Celular , Humanos , Ativação Linfocitária , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/imunologia
2.
Cancers (Basel) ; 13(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439212

RESUMO

Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-ß), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-ß signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-ß activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-ß activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

3.
Cell Rep ; 36(2): 109359, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260935

RESUMO

The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.


Assuntos
Butirofilinas/metabolismo , Proteínas de Checkpoint Imunológico/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Antígenos/metabolismo , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Fosforilação , Ligação Proteica , Transporte Proteico
4.
Cancer Immunol Res ; 9(5): 568-582, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727246

RESUMO

Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Melanoma/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Células Th1/imunologia
5.
Nat Commun ; 11(1): 437, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974367

RESUMO

Immune checkpoint inhibitors (ICIs) have dramatically modified the prognosis of several advanced cancers, however many patients still do not respond to treatment. Optimal results might be obtained by targeting cancer cell metabolism to modulate the immunosuppressive tumor microenvironment. Here, we identify sphingosine kinase-1 (SK1) as a key regulator of anti-tumor immunity. Increased expression of SK1 in tumor cells is significantly associated with shorter survival in metastatic melanoma patients treated with anti-PD-1. Targeting SK1 markedly enhances the responses to ICI in murine models of melanoma, breast and colon cancer. Mechanistically, SK1 silencing decreases the expression of various immunosuppressive factors in the tumor microenvironment to limit regulatory T cell (Treg) infiltration. Accordingly, a SK1-dependent immunosuppressive signature is also observed in human melanoma biopsies. Altogether, this study identifies SK1 as a checkpoint lipid kinase that could be targeted to enhance immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Nivolumabe/uso terapêutico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Linfócitos T Reguladores/patologia , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/fisiologia
6.
Mol Cancer Ther ; 18(2): 289-300, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30482853

RESUMO

BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.


Assuntos
Compostos de Bifenilo/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Melanoma/tratamento farmacológico , Nitrofenóis/administração & dosagem , Receptores de Lisoesfingolipídeo/metabolismo , Esfingolipídeos/sangue , Sulfonamidas/administração & dosagem , Animais , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Nitrofenóis/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Sulfonamidas/farmacologia , Vemurafenib , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nat Commun ; 8(1): 2256, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273790

RESUMO

Antibodies against programmed cell death-1 (PD-1) have considerably changed the treatment for melanoma. However, many patients do not display therapeutic response or eventually relapse. Moreover, patients treated with anti-PD-1 develop immune-related adverse events that can be cured with anti-tumor necrosis factor α (TNF) antibodies. Whether anti-TNF antibodies affect the anti-cancer immune response remains unknown. Our recent work has highlighted that TNFR1-dependent TNF signalling impairs the accumulation of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in mouse melanoma. Herein, our results indicate that TNF or TNFR1 blockade synergizes with anti-PD-1 on anti-cancer immune responses towards solid cancers. Mechanistically, TNF blockade prevents anti-PD-1-induced TIL cell death as well as PD-L1 and TIM-3 expression. TNF expression positively correlates with expression of PD-L1 and TIM-3 in human melanoma specimens. This study provides a strong rationale to develop a combination therapy based on the use of anti-PD-1 and anti-TNF in cancer patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Receptor Celular 2 do Vírus da Hepatite A/efeitos dos fármacos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Ipilimumab/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Nivolumabe , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Oncotarget ; 7(44): 71873-71886, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27708249

RESUMO

The infiltration of melanoma tumors by macrophages is often correlated with poor prognosis. However, the molecular signals that regulate the dialogue between malignant cells and the inflammatory microenvironment remain poorly understood. We previously reported an increased expression of sphingosine kinase-1 (SK1), which produces the bioactive lipid sphingosine 1-phosphate (S1P), in melanoma. The present study aimed at defining the role of tumor SK1 in the recruitment and differentiation of macrophages in melanoma. Herein, we show that downregulation of SK1 in melanoma cells causes a reduction in the percentage of CD206highMHCIIlow M2 macrophages in favor of an increased proportion of CD206lowMHCIIhigh M1 macrophages into the tumor. This macrophage differentiation orchestrates T lymphocyte recruitment as well as tumor rejection through the expression of Th1 cytokines and chemokines. In vitro experiments indicated that macrophage migration is triggered by the binding of tumor S1P to S1PR1 receptors present on macrophages whereas macrophage differentiation is stimulated by SK1-induced secretion of TGF-ß1. Finally, RNA-seq analysis of human melanoma tumors revealed a positive correlation between SK1 and TGF-ß1 expression. Altogether, our findings demonstrate that melanoma SK1 plays a key role in the recruitment and phenotypic shift of the tumor macrophages that promote melanoma growth.


Assuntos
Macrófagos/fisiologia , Melanoma/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Proliferação de Células , Regulação para Baixo , Humanos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/fisiologia , Receptores de Esfingosina-1-Fosfato , Fator de Crescimento Transformador beta1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA