Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 43(5): 821-828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388739

RESUMO

PURPOSE: Single doses of gentamicin have demonstrated clinical efficacy in the treatment of urogenital gonorrhea, but lower cure rates for oropharyngeal and anorectal gonorrhea. Formulations selectively enriched in specific gentamicin C congeners have been proposed as a less toxic alternative to gentamicin, potentially permitting higher dosing to result in increased plasma exposures at the extragenital sites of infection. The purpose of the present study was to compare the antibacterial activity of individual gentamicin C congeners against Neisseria gonorrhoeae to that of other aminoglycoside antibiotics. METHODS: Antimicrobial susceptibility of three N. gonorrhoeae reference strains and 152 clinical isolates was assessed using standard disk diffusion, agar dilution, and epsilometer tests. RESULTS: Gentamicin C1, C2, C1a, and C2a demonstrated similar activity against N. gonorrhoeae. Interestingly, susceptibility to the 1-N-ethylated aminoglycosides etimicin and netilmicin was significantly higher than the susceptibility to their parent compounds gentamicin C1a and sisomicin, and to any other of the 25 aminoglycosides assessed in this study. Propylamycin, a 4'-propylated paromomycin analogue, was significantly more active against N. gonorrhoeae than its parent compound, too. CONCLUSION: Selectively enriched gentamicin formulations hold promise for a less toxic but equally efficacious alternative to gentamicin. Our study warrants additional consideration of the clinically established netilmicin and etimicin for treatment of genital and perhaps extragenital gonorrhea. Additional studies are required to elucidate the mechanism behind the advantage of alkylated aminoglycosides.


Assuntos
Aminoglicosídeos , Antibacterianos , Gentamicinas , Gonorreia , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Humanos , Aminoglicosídeos/farmacologia , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Netilmicina/farmacologia
2.
Med Mycol ; 62(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38242842

RESUMO

Infections with Scedosporium spp. are emerging in the past two decades and are associated with a high mortality rate. Microbiological detection can be associated with either colonization or infection. Evolution from colonization into infection is difficult to predict and clinical management upon microbiological detection is complex. Microbiological samples from 2015 to 2021 were retrospectively analyzed in a single tertiary care center. Classification into colonization or infection was performed upon first microbiological detection. Clinical evolution was observed until July 2023. Further diagnostic procedures after initial detection were analyzed. Among 38 patients with microbiological detection of Scedosporium spp., 10 were diagnosed with an infection at the initial detection and two progressed from colonization to infection during the observation time. The main sites of infection were lung (5/12; 41.6%) followed by ocular sites (4/12; 33.3%). Imaging, bronchoscopy or biopsies upon detection were performed in a minority of patients. Overall mortality rate was similar in both groups initially classified as colonization or infection [30.7% and 33.3%, respectively (P = 1.0)]. In all patients where surgical debridement of site of infection was performed (5/12; 42%); no death was observed. Although death occurred more often in the group without eradication (3/4; 75%) compared with the group with successful eradication (1/8; 12.5%), statistical significance could not be reached (P = 0.053). As therapeutic management directly impacts patients' outcome, a multidisciplinary approach upon microbiological detection of Scedosporium spp. should be encouraged. Data from larger cohorts are warranted in order to analyze contributing factors favoring the evolution from colonization into infection.


Scedosporium is an environmental mould with a varied clinical relevance, as described in this cohort from a tertiary centre. Its microbiological detection represents a colonization or infection. An interdisciplinary approach is crucial for an optimal diagnostic strategy and patient outcome.


Assuntos
Scedosporium , Humanos , Estudos Retrospectivos , Antifúngicos/uso terapêutico , Relevância Clínica , Fatores de Risco
3.
Neurocrit Care ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087175

RESUMO

BACKGROUND: Patients with hemorrhagic stroke and an external ventricular drain in situ are at risk for ventriculostomy-related-infections (VRI). Because of the contamination of the cerebrospinal fluid (CSF) with blood and the high frequency of false negative CSF culture, the diagnosis of VRI remains challenging. This study investigated the introduction of CSF broad range eubacterial polymerase chain reaction (ePCR) and its effect on frequency and duration of antibiotic therapy for VRI, neurocritical care unit (NCCU) length of stay, related costs, and outcome. METHODS: Between 2020 and 2022, we prospectively included 193 patients admitted to the NCCU of the University Hospital of Zürich with hemorrhagic stroke and an external ventricular drain for more than 48 h. Patient characteristics, serum inflammatory markers, white blood cell count in CSF, use and duration of antibiotic treatment for VRI, microbiological findings (CSF cultures and ePCR tests), and NCCU length of stay were compared in patients with no infection, noncerebral infection, suspected VRI, and confirmed VRI. Data of patients with suspected VRI of this cohort were compared with a retrospective cohort of patients with suspected VRI treated at our NCCU before the introduction of CSF ePCR testing (2013-2019). RESULTS: Out of 193 patients, 12 (6%) were diagnosed with a confirmed VRI, 66 (34%) with suspected VRI, 90 (47%) with a noncerebral infection, and 25 (13%) had no infection at all. Compared with the retrospective cohort of patients, the use of CSF ePCR resulted in a reduction of patients treated for suspected VRI for the whole duration of 14 days (from 51 to 11%). Furthermore, compared with the retrospective group of patients with suspected VRI (n = 67), after the introduction of CSF ePCR, patients with suspected VRI had shorter antibiotic treatment duration of almost 10 days and, hence, lower related costs with comparable outcome at 3 months. CONCLUSIONS: The use of CSF ePCR to identify VRI resulted in shorter antibiotic treatment duration without changing the outcome, as compared with a retrospective cohort of patients with suspected VRI.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35391578

RESUMO

Finegoldia magna is an anaerobic gram-positive bacterium that can cause invasive human infections. Recently, a 52-year-old patient suffering from a periprosthetic joint infection (PJI) due to F. magna was treated with cefepime on hemodialysis; however, treatment failed due to relapse caused by antibiotic-resistant strains. Reports on the antimicrobial susceptibility of F. magna clinical isolates are rare. We collected 57 clinical F. magna isolates from Zurich, Switzerland, between September 2019 and July 2020 and tested their antimicrobial susceptibility to investigate the local resistance pattern. Antimicrobial susceptibility testing (AST) was evaluated for nine antibiotics (benzylpenicillin, amoxicillin/clavulanic acid, cefuroxime, cefepime, levofloxacin, rifampicin, metronidazole, doxycycline, and clindamycin) by E-test according to CLSI guidelines. All F. magna strains were susceptible to benzylpenicillin, amoxicillin/clavulanic acid, and metronidazole, while 75% to clindamycin. F. magna isolates showed MIC values lower than species-unrelated breakpoints for cefuroxime, levofloxacin, and cefepime in 93%, 56%, and 32% of the cases, respectively. MIC values for rifampicin and doxycycline were lower than locally determined ECOFFs in 98% and 72% of the cases, respectively. In summary, we recommend the use of benzylpenicillin, amoxicillin/clavulanic acid, or metronidazole without prior AST as first-line treatment option against F. magna PJI infections. If cefuroxime, cefepime, levofloxacin, rifampicin, doxycycline, or clindamycin are used, AST is mandatory.

5.
Ann Clin Microbiol Antimicrob ; 20(1): 64, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493302

RESUMO

BACKGROUND: Bacterial superinfections associated with COVID-19 are common in ventilated ICU patients and impact morbidity and lethality. However, the contribution of antimicrobial resistance to the manifestation of bacterial infections in these patients has yet to be elucidated. METHODS: We collected 70 Gram-negative bacterial strains, isolated from the lower respiratory tract of ventilated COVID-19 patients in Zurich, Switzerland between March and May 2020. Species identification was performed using MALDI-TOF; antibiotic susceptibility profiles were determined by EUCAST disk diffusion and CLSI broth microdilution assays. Selected Pseudomonas aeruginosa isolates were analyzed by whole-genome sequencing. RESULTS: Pseudomonas aeruginosa (46%) and Enterobacterales (36%) comprised the two largest etiologic groups. Drug resistance in P. aeruginosa isolates was high for piperacillin/tazobactam (65.6%), cefepime (56.3%), ceftazidime (46.9%) and meropenem (50.0%). Enterobacterales isolates showed slightly lower levels of resistance to piperacillin/tazobactam (32%), ceftriaxone (32%), and ceftazidime (36%). All P. aeruginosa isolates and 96% of Enterobacterales isolates were susceptible to aminoglycosides, with apramycin found to provide best-in-class coverage. Genotypic analysis of consecutive P. aeruginosa isolates in one patient revealed a frameshift mutation in the transcriptional regulator nalC that coincided with a phenotypic shift in susceptibility to ß-lactams and quinolones. CONCLUSIONS: Considerable levels of antimicrobial resistance may have contributed to the manifestation of bacterial superinfections in ventilated COVID-19 patients, and may in some cases mandate consecutive adaptation of antibiotic therapy. High susceptibility to amikacin and apramycin suggests that aminoglycosides may remain an effective second-line treatment of ventilator-associated bacterial pneumonia, provided efficacious drug exposure in lungs can be achieved.


Assuntos
Antibacterianos/farmacologia , COVID-19/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Sistema Respiratório/microbiologia , COVID-19/complicações , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Pneumonia Associada à Ventilação Mecânica/microbiologia , Estudos Prospectivos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Suíça
6.
Helicobacter ; 25(6): e12752, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32844531

RESUMO

BACKGROUND: Resistance to clarithromycin in Helicobacter pylori (H pylori) is mediated by mutations in the domain V of the 23S rRNA gene (A2142G, A2143G, A2142C). Other polymorphisms in the 23S rRNA gene have been reported to cause low-level clarithromycin resistance but their importance is still under debate. In this study, we aimed to develop and evaluate the CRHP Finder webtool for detection of the most common mutations mediating clarithromycin resistance from whole-genome sequencing (WGS) data. Moreover, we included an analysis of 23 H pylori strains from Danish patients between January 2017 and September 2019 in Copenhagen, Denmark. MATERIALS AND METHODS: The CRHP Finder detects the fraction of each of the four nucleotides in nucleotide positions 2142, 2143, 2182, 2244 and 2712 of the 23S rRNA gene in H pylori (E coli numbering) by aligning raw sequencing reads (fastq format) with k-mer alignment (KMA). The nucleotide distribution in each position is compared to previously described point mutations mediating clarithromycin resistance in H pylori, and a genotypic prediction of the clarithromycin resistance phenotype is presented as output. For validation of the CRHP webtool, 137 fastq paired-end sequencing datasets originating from a well-characterized strain collection of H pylori were analyzed. RESULTS: The CRHP Finder correctly identified all resistance mutations reported in the sequencing data of 137 H pylori strains. In the 23 Danish H pylori strains, CRHP Finder detected A2143G (13%) in all resistant strains, and T2182C (13%) and C2244T (4,3%) nucleotide exchanges in only susceptible strains. CONCLUSION: In this study, we present the validation of the first webtool for H pylori resistance prediction based on the detection of 23S rRNA mutations (A2142C, A2142G, A2143G, T2182C, C2244T, T2712C) from WGS data of H pylori.


Assuntos
Claritromicina , Farmacorresistência Bacteriana , Helicobacter pylori , Software , Antibacterianos/farmacologia , Claritromicina/farmacologia , Dinamarca , Infecções por Helicobacter , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Humanos , Testes de Sensibilidade Microbiana , RNA Ribossômico 23S/genética
7.
BMC Infect Dis ; 20(1): 7, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900105

RESUMO

BACKGROUND: Mycoplasma sp. are well recognized as etiological agents of respiratory and sexually transmitted disease. Mycoplasma penetrans, a species of Mycoplasma sp., has been frequently detected in HIV-positive patients and associated with the progression of HIV-associated disease. To date, there is only a single case report describing M. penetrans as the causative agent of a severe respiratory tract infection in a HIV-negative patient. CASE PRESENTATION: In this report, we describe the case of M. penetrans bacteremia in a HIV-negative, 38-year-old, female, immunocompromised, solid organ transplant patient (combined kidney and pancreas transplantation in 2016), who was admitted to our hospital with anemic uterine bleeding and fever of 38.3 °C. Several hours before her admission at our university hospital, a latex bladder catheter was inserted into her uterus and she complained about fatigue, dizziness and ongoing vaginal bleeding. Laboratory examination showed severe anemia, but microbiological examination was inconspicuous (culture negative vaginal and cervical smears, negative urine culture). Bacterial blood cultures showed a growth signal after 4 h, but microscopic examination with Gram staining and subcultures on different agar media did not identify bacterial pathogens. To identify the bacterial cause of malignancy in the patient, metagenomic sequencing of the blood culture was performed that identified M. penetrans. CONCLUSION: Metagenomic sequencing identified M. penetrans in an immunosuppressed patient with culture-negative bacteremia. Clinicians should be aware of the opportunistic potential of M. penetrans that may cause severe infections in certain vulnerable patient populations and the limitations of culture and Gram staining for confirming the presence of fastidious bacterial pathogens like Mycoplasma spp.


Assuntos
Bacteriemia/diagnóstico , Hospedeiro Imunocomprometido , Metagenômica , Infecções por Mycoplasma/diagnóstico , Mycoplasma penetrans , Infecções Respiratórias/diagnóstico , Adulto , Bacteriemia/genética , Bacteriemia/microbiologia , Análise Mutacional de DNA/métodos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Feminino , Soronegatividade para HIV , Humanos , Transplante de Rim , Metagenoma , Metagenômica/métodos , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/microbiologia , Mycoplasma penetrans/genética , Mycoplasma penetrans/isolamento & purificação , Transplante de Pâncreas , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA
10.
Int J Med Microbiol ; 308(3): 317-323, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397298

RESUMO

Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was below 4 h, which is expected to significantly improve diagnostics for atypical pneumonia-associated bacterial pathogens.


Assuntos
Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Pneumonia Bacteriana/diagnóstico , Pneumonia por Mycoplasma/diagnóstico , Infecções Respiratórias/diagnóstico , Adolescente , Bactérias/genética , Bactérias/patogenicidade , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/isolamento & purificação , Chlamydophila pneumoniae/patogenicidade , DNA Bacteriano/genética , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Legionella/genética , Legionella/isolamento & purificação , Legionella/patogenicidade , Masculino , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/economia , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Mycoplasma pneumoniae/patogenicidade , Pneumonia Bacteriana/microbiologia , Pneumonia por Mycoplasma/microbiologia , Kit de Reagentes para Diagnóstico , Infecções Respiratórias/microbiologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação
11.
Transpl Infect Dis ; 20(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29044831

RESUMO

Scedosporium species are fungal pathogens increasingly recognized in cystic fibrosis (CF). They can cause multiresistant, life-threatening infections that are of particular concern in CF patients undergoing lung transplantation, as optimal treatment remains unclear. Here, we describe our Zurich experience of CF patients with Scedosporium infection. Disseminated infection occurred in one patient after transplantation and was successfully treated. We propose a step-by-step approach to treat candidates with colonization, and discuss our cases in the context of the current literature.


Assuntos
Transplante de Pulmão/efeitos adversos , Micoses/epidemiologia , Scedosporium/isolamento & purificação , Transplantados , Adulto , Antifúngicos/uso terapêutico , Fibrose Cística/microbiologia , Feminino , Humanos , Masculino , Micetoma/tratamento farmacológico , Micoses/microbiologia , Suíça/epidemiologia , Voriconazol/uso terapêutico , Adulto Jovem
12.
J Proteome Res ; 15(8): 2812-25, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378031

RESUMO

Pupylation is a bacterial ubiquitin-like protein modification pathway, which results in the attachment of the small protein Pup to specific lysine residues of cellular targets. Pup was shown to serve as a degradation signal, directing proteins toward the bacterial proteasome for turnover. Recently, it was hypothesized that pupylation and proteasomal protein degradation support the survival of Mycobacterium smegmatis (Msm) during nitrogen starvation by supplying recycled amino acids. In the present study we generated a Pup deletion strain to investigate the influence of pupylation on Msm proteome in the absence of nitrogen sources. Quantitative proteomic analyses revealed a relatively low impact of Pup on MsmΔpup proteome immediately after exposure to growth medium lacking nitrogen. Less than 5.4% of the proteins displayed altered cellular levels when compared to Msm wild type. In contrast, post 24 h of nitrogen starvation 501 proteins (41% of the total quantified proteome) of Msm pup deletion strain showed significant changes in abundance. Noteworthy, important players involved in nitrogen assimilation were significantly affected in MsmΔpup. Furthermore, we quantified pupylated proteins of nitrogen-starved Msm to gain more detailed insights in the role of pupylation in surviving and overcoming the lack of nitrogen.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Nitrogênio/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Ubiquitinas/metabolismo , Aminoácidos/metabolismo , Proteólise , Proteoma/metabolismo
13.
Biochim Biophys Acta ; 1843(1): 103-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23557784

RESUMO

Posttranslational modifications in the form of covalently attached proteins like ubiquitin (Ub), were long considered an exclusive feature of eukaryotic organisms. The discovery of pupylation, the modification of lysine residues with a prokaryotic, ubiquitin-like protein (Pup), demonstrated that certain bacteria use a tagging pathway functionally related to ubiquitination in order to target proteins for proteasomal degradation. However, functional analogies do not translate into structural or mechanistic relatedness. Bacterial Pup, unlike eukaryotic Ub, does not adopt a ß-grasp fold, but is intrinsically disordered. Furthermore, isopeptide bond formation in the pupylation process is carried out by enzymes evolutionary descendent from glutamine synthetases. While in eukaryotes, the proteasome is the main energy-dependent protein degradation machine, bacterial proteasomes exist in addition to other architecturally related degradation complexes, and their specific role along with the role of pupylation is still poorly understood. In Mycobacterium tuberculosis (Mtb), the Pup-proteasome system contributes to pathogenicity by supporting the bacterium's persistence within host macrophages. Here, we describe the mechanism and structural framework of pupylation and the targeting of pupylated proteins to the proteasome complex. Particular attention is given to the comparison of the bacterial Pup-proteasome system and the eukaryotic ubiquitin-proteasome system. Furthermore, the involvement of pupylation and proteasomal degradation in Mtb pathogenesis is discussed together with efforts to establish the Pup-proteasome system as a drug target. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação/fisiologia , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Modelos Moleculares , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/fisiologia , Homologia de Sequência de Aminoácidos
14.
Int J STD AIDS ; 35(6): 462-470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297880

RESUMO

BACKGROUND: While ceftriaxone resistance remains scarce in Switzerland, global Neisseria gonorrhoeae (NG) antimicrobial resistance poses an urgent threat. This study describes clinical characteristics in MSM (men who have sex with men) diagnosed with NG infection and analyses NG resistance by phenotypic and genotypic means. METHODS: Data of MSM enrolled in three clinical cohorts with a positive polymerase chain reaction test (PCR) for NG were analysed between January 2019 and December 2021 and linked with antibiotic susceptibility testing. Bacterial isolates were subjected to whole genome sequencing (WGS). RESULTS: Of 142 participants, 141 (99%) were MSM and 118 (84%) living with HIV. Participants were treated with ceftriaxone (N = 79), azithromycin (N = 2), or a combination of both (N = 61). No clinical or microbiological failures were observed. From 182 positive PCR samples taken, 23 were available for detailed analysis. Based on minimal inhibitory concentrations (MICs), all isolates were susceptible to ceftriaxone, gentamicin, cefixime, cefpodoxime, ertapenem, zoliflodacin, and spectinomycin. Resistance to azithromycin, tetracyclines and ciprofloxacin was observed in 10 (43%), 23 (100%) and 11 (48%) of the cases, respectively. Analysis of WGS data revealed combinations of resistance determinants that matched with the corresponding phenotypic resistance pattern of each isolate. CONCLUSION: Among the MSM diagnosed with NG mainly acquired in Switzerland, ceftriaxone MICs were low for a subset of bacterial isolates studied and no treatment failures were observed. For azithromycin, high occurrences of in vitro resistance were found. Gentamicin, cefixime, cefpodoxime, ertapenem, spectinomycin, and zoliflodacin displayed excellent in vitro activity against the 23 isolates underscoring their potential as alternative agents to ceftriaxone.


Assuntos
Antibacterianos , Azitromicina , Ceftriaxona , Genótipo , Gonorreia , Homossexualidade Masculina , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Fenótipo , Sequenciamento Completo do Genoma , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/isolamento & purificação , Suíça/epidemiologia , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Gonorreia/epidemiologia , Gonorreia/diagnóstico , Adulto , Homossexualidade Masculina/estatística & dados numéricos , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Azitromicina/uso terapêutico , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Pessoa de Meia-Idade , Infecções Sexualmente Transmissíveis/microbiologia , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Cefixima/farmacologia , Cefixima/uso terapêutico
15.
Antibiotics (Basel) ; 12(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37508215

RESUMO

OBJECTIVES: Quinolone resistance in Escherichia coli occurs mainly as a result of mutations in the quinolone-resistance-determining regions of gyrA and parC, which encode the drugs' primary targets. Mutational alterations affecting drug permeability or efflux as well as plasmid-based resistance mechanisms can also contribute to resistance, albeit to a lesser extent. Simplifying and generalizing complex evolutionary trajectories, low-level resistance towards fluoroquinolones arises from a single mutation in gyrA, while clinical high-level resistance is associated with two mutations in gyrA plus one mutation in parC. Both low- and high-level resistance can be detected phenotypically using nalidixic acid and fluoroquinolones such as ciprofloxacin, respectively. The aim of this study was to develop a decision tree based on disc diffusion data and to define epidemiological cut-offs to infer resistance mechanisms and to predict clinical resistance in E. coli. This diagnostic algorithm should provide a coherent genotype/phenotype classification, which separates the wildtype from any non-wildtype and further differentiates within the non-wildtype. METHODS: Phenotypic susceptibility of 553 clinical E. coli isolates towards nalidixic acid, ciprofloxacin, norfloxacin and levofloxacin was determined by disc diffusion, and the genomes were sequenced. Based on epidemiological cut-offs, we developed a QUInolone Resistance Mechanisms Inference Algorithm (QUIRMIA) to infer the underlying resistance mechanisms responsible for the corresponding phenotypes, resulting in the categorization as "susceptible" (wildtype), "low-level resistance" (non-wildtype) and "high-level resistance" (non-wildtype). The congruence of phenotypes and whole genome sequencing (WGS)-derived genotypes was then assigned using QUIRMIA- and EUCAST-based AST interpretation. RESULTS: QUIRMIA-based inference of resistance mechanisms and sequencing data were highly congruent (542/553, 98%). In contrast, EUCAST-based classification with its binary classification into "susceptible" and "resistant" isolates failed to recognize and properly categorize low-level resistant isolates. CONCLUSIONS: QUIRMIA provides a coherent genotype/phenotype categorization and may be integrated in the EUCAST expert rule set, thereby enabling reliable detection of low-level resistant isolates, which may help to better predict outcome and to prevent the emergence of clinical resistance.

16.
Antibiotics (Basel) ; 12(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508308

RESUMO

The reference method for cefiderocol antimicrobial susceptibility testing is broth microdilution (BMD) with iron-depleted-Mueller-Hinton (ID-MH) medium, whereas breakpoints recommended for disk diffusion (DD) are based on MH-agar plates. We aimed to compare the performance of the commercial BMD tests ComASP (Liofilchem) and UMIC (Bruker), and DD and E-test using MH- and ID-MH-agar plates with the reference BMD method using 100 carbapenem-resistant-A. baumannii isolates. Standard BMD was performed according to the EUCAST guidelines; DD and E-test were carried out using two commercial MH-agar plates (BioMérieux and Liofilchem) and an in-house ID-MH-agar plate, while ComASP and UMIC were performed according to the manufacturer's guidelines. DD performed with the ID-MH-agar plates led to a higher categorical agreement (CA, 95.1%) with standard BMD and fewer categorization errors compared to the commercial MH-agar plates (CA BioMérieux 91.1%, Liofilchem 89.2%). E-test on ID-MH-agar plates exhibited a significantly higher essential agreement (EA, 75%) with standard BMD compared to the two MH-agar plates (EA BioMérieux 57%, Liofilchem 44%), and showed a higher performance in detecting high-level resistance than ComASP and UMIC (mean log2 difference with standard BMD for resistant isolates of 0.5, 2.83, and 2.08, respectively). In conclusion, DD and E-test on ID-MH-agar plates exhibit a higher diagnostic performance than on MH-agar plates and the commercial BMD methods. Therefore, we recommend using ID-MH-agar plates for cefiderocol susceptibility testing of A. baumannii.

17.
EMBO Rep ; 11(10): 791-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20798673

RESUMO

Post-translational modification of proteins with prokaryotic ubiquitin-like protein (Pup) is the bacterial equivalent of ubiquitination in eukaryotes. Mycobacterial pupylation is a two-step process in which the carboxy-terminal glutamine of Pup is first deamidated by Dop (deamidase of Pup) before ligation of the generated γ-carboxylate to substrate lysines by the Pup ligase PafA. In this study, we identify a new feature of the pupylation system by demonstrating that Dop also acts as a depupylase in the Pup proteasome system in vivo and in vitro. Dop removes Pup from substrates by specific cleavage of the isopeptide bond. Depupylation can be enhanced by the unfolding activity of the mycobacterial proteasomal ATPase Mpa.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Glutamina/metabolismo , Ligases/metabolismo , Lisina/metabolismo , Mycobacterium tuberculosis/genética , Complexo de Endopeptidases do Proteassoma/genética
18.
Microbiol Spectr ; 10(6): e0213722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287018

RESUMO

In carbapenemase-producing Enterobacterales (CPE) additional ß-lactam resistance mechanisms such as extended-spectrum-ß-lactamases (ESBL) and/or AmpC-ß-lactamases are generally difficult to detect by phenotypical methods. Recently, a modified version of the CLSI ESBL confirmatory combination disc diffusion (CDD) test, which involves the addition of boronic acid and EDTA on discs containing ESBL and AmpC substrates ± inhibitors, has been proposed for the detection of ESBL in class A and class B CPE. Here, the performance of the modified CDD test was evaluated using 121 genotypically characterized class A and class B CPE. Also, the effectiveness of the NG-Test CTX-M-MULTI lateral flow immunoassay was evaluated for ESBL detection. For class A CPE (n = 47), the modified CDD method exhibited an equal specificity (95.7%) and a higher sensitivity (100%) compared to the standard method (91.7%). The CTX-M-MULTI test detected ESBL in all CTX-M-type ESBL producers (n = 23), whereas it was negative for all CTX-M-type ESBL-negative isolates (n = 24). For class B CPE (n = 71), the modified method significantly improved both sensitivity (95%) and specificity (100%) in detecting ESBL compared to the standard method (17.5% sensitivity and 83.9% specificity). In comparison, the CTX-M-MULTI led to identification of ESBL in all CTX-M-ESBL-producers (n = 39) and no false-positive signal was generated with the CTX-M-type-ESBL-negative isolates (n = 30). Furthermore, the modified CDD improved the robustness of the method for AmpC detection (inconclusive results were produced in 53/57 and 10/57 cases with the standard and modified method, respectively), although the sensitivity of the test was poor (23.5%). Here, we propose a practical and cost-effective approach combining the modified CDD and the CTX-M-MULTI test for detection of ESBL and/or AmpC in class A and B CPE. IMPORTANCE Antimicrobial resistance is a growing public health threat of broad concern worldwide. Timely detection of antibiotic resistance mechanisms can help to monitor and to curb the spread of resistant bacteria within the hospital setting as well as in the environment. In this work we report an accurate and affordable method to phenotypically identify difficult-to-detect resistance determinants in highly resistant (carbapenemase-producing) bacteria. This method may be implemented in any diagnostic microbiology lab and may reduce the underreporting of relevant resistance mechanisms.


Assuntos
Antibacterianos , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias , Bactérias , Resistência beta-Lactâmica , Testes de Sensibilidade Microbiana
19.
Swiss Med Wkly ; 152: w30102, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35019255

RESUMO

Zoonotic species of the Chlamydiaceae family should be considered as rare pathogenic agents of severe atypical pneumonia. A fatal case of a severe pneumonia due to Chlamydia psittaci was traced back to pet birds, and pneumonia in a pregnant woman was attributed to abortions in a sheep and goat flock, being the source of Chlamydia abortus. The two SARS­CoV­2-negative pneumonia cases presented here were investigated in an inter-disciplinary approach involving physicians and veterinarians. State-of-art molecular methods allowed the identification and genotyping of zoonotic Chlamydiae.


Assuntos
COVID-19 , Infecções por Chlamydia , Chlamydophila psittaci , Animais , Aves , Infecções por Chlamydia/complicações , Infecções por Chlamydia/diagnóstico , Chlamydophila psittaci/genética , Feminino , Humanos , Gravidez , SARS-CoV-2 , Ovinos
20.
Open Forum Infect Dis ; 9(6): ofac217, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35783686

RESUMO

Background: Mycoplasma genitalium (Mg) is an emerging sexually transmitted pathogen among men who have sex with men (MSM). Resistance to recommended antimicrobial agents are of public health concern. Few data exist on Mg infections in MSM diagnosed with human immunodeficiency virus (HIV) during primary HIV infection. Methods: Participants of the Zurich Primary HIV Study (ClinicalTrials.gov Identifier NCT00537966) were systematically offered screening for sexually transmitted infections (STIs) between April 2019 and September 2020. Screening was performed using an in-house polymerase chain reaction panel comprising Mg including genotypic resistance testing for macrolides and quinolones, Chlamydia trachomatis including serovars L1-L3, Neisseria gonorrhoeae, Treponema pallidum, and Hemophilus ducreyi. Results: We screened 148 of 266 (55.6%) participants, with an overall total of 415 follow-up visits. Ninety-one percent were MSM. The incidence rate for all STIs was 47.0 (95% confidence interval [CI], 32.2-68.6) per 100 person-years. Mycoplasma genitalium was the most frequently detected pathogen: 30 participants (20%) presented with at least 1 Mg infection, corresponding to a period prevalence of 20.3% and incidence rate of 19.5 Mg infections (95% CI, 11.8-32.4). Most Mg infections (93%) were asymptomatic, and 9 (30%) participants showed spontaneous clearance. We detected high rates of antibiotic resistance: 73.3% to macrolides, 3.3% to quinolones, and 13.3% resistance to both antibiotics. Conclusions: The high prevalence of mostly asymptomatic Mg infections and high rate of spontaneous clearance support cautious initiation for treatment. The high proportion of macrolide-resistant strains suggests that a genotypic determination of resistance should be standard of care. Moxifloxacin should be the preferred treatment option for symptomatic Mg infections among MSM if resistance testing is unavailable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA