Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Neuropathol Appl Neurobiol ; 49(4): e12923, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462105

RESUMO

The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Estudos Longitudinais , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Tauopatias/patologia
2.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652502

RESUMO

The blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC) that are tightly linked by tight junction (TJ) proteins, restricts the movement of molecules between the periphery and the central nervous system. Elevated systemic levels of neutrophils have been detected in patients with altered BBB function, but the role of neutrophils in BMEC dysfunction is unknown. Neutrophils are key players of the immune response and, when activated, produce neutrophil-derived microvesicles (NMV). NMV have been shown to impact the integrity of endothelial cells throughout the body and we hypothesize that NMV released from circulating neutrophils interact with BMEC and induce endothelial cell dysfunction. Therefore, the current study investigated the interaction of NMV with human BMEC and determined whether they altered gene expression and function in vitro. Using flow cytometry and confocal imaging, NMV were shown to be internalized by the human cerebral microvascular endothelial cell line hCMEC/D3 via a variety of energy-dependent mechanisms, including endocytosis and macropinocytosis. The internalization of NMV significantly altered the transcriptomic profile of hCMEC/D3, specifically inducing the dysregulation of genes associated with TJ, ubiquitin-mediated proteolysis and vesicular transport. Functional studies confirmed NMV significantly increased permeability and decreased the transendothelial electrical resistance (TEER) of a confluent monolayer of hCMEC/D3. These findings indicate that NMV interact with and affect gene expression of BMEC as well as impacting their integrity. We conclude that NMV may play an important role in modulating the permeability of BBB during an infection.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Neutrófilos/metabolismo , Barreira Hematoencefálica/citologia , Permeabilidade Capilar , Células Cultivadas , Endocitose , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos
3.
Glia ; 66(11): 2316-2323, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098078

RESUMO

Oxidative stress and oxidative DNA damage are early features of mild cognitive impairment and Alzheimer's disease (AD), occurring before the formation of classical AD neuropathology, and resulting from an imbalance between pro- and anti-oxidants. Astrocytes play a major neuroprotective role, producing high levels of anti-oxidants including metallothionein-I and -II (MT-I/II). In the present study we characterized the immunoreactive profile of MT-I/II in the temporal cortex of the Cognitive Function and Ageing Study (CFAS) aging population-representative neuropathology cohort, and examined H2 O2 -modulation of MT transcription by human astrocytes. MT-I/II is primarily expressed by astrocytes in the aging brain, but is also associated with pyramidal neurons in a small proportion of cases. Astrocyte expression of MT-I/II does not correlate with Alzheimer-type pathology (Aß plaques and neurofibrillary tangles) but does relate to astrocyte oxidative DNA damage (rs = .312, p = .006) and the astrocyte response to oxidative DNA damage in vivo (rs = .238, p = .04), and MT gene expression is significantly induced in human astrocytes response to oxidative stress in vitro (p = .01). In contrast, neuronal MT-I/II does not relate to oxidative DNA damage or the neuronal DNA damage response, but is significantly higher in cases with high levels of local tangle pathology (p = .007). As MT-I/II is neuroprotective against oxidative stress, modulation of MT-I/II expression is a potential therapeutic target to treat the onset and progression of cognitive impairment.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Dano ao DNA/fisiologia , Metalotioneína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/patologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Metalotioneína/genética , Neurônios/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Fatores de Tempo
4.
Neuroimage ; 179: 275-287, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29933040

RESUMO

This study aims to statistically describe histologically stained white matter brain sections to subsequently inform and validate diffusion MRI techniques. For the first time, we characterise volume fraction distributions of three of the main structures in deep subcortical white matter (axons, astrocytes, and myelinated axons) in a representative cohort of an ageing population for which well-characterized neuropathology data is available. We analysed a set of samples from 90 subjects of the Cognitive Function and Ageing Study (CFAS), stratified into three groups of 30 subjects each, in relation to the presence of age-associated deep subcortical lesions. This provides volume fraction distributions in different scenarios relevant to brain diffusion MRI in dementia. We also assess statistically significant differences found between these groups. In agreement with previous literature, our results indicate that white matter lesions are related with a decrease in the myelinated axons fraction and an increase in astrocytic fraction, while no statistically significant changes occur in axonal mean fraction. In addition, we introduced a framework to quantify volume fraction distributions from 2D immunohistochemistry images, which is validated against in silico simulations. Since a trade-off between precision and resolution emerged, we also performed an assessment of the optimal scale for computing such distributions.


Assuntos
Astrócitos/citologia , Axônios/ultraestrutura , Encéfalo/citologia , Bainha de Mielina/ultraestrutura , Substância Branca/citologia , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
5.
Eur J Neurosci ; 47(12): 1444-1456, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29738614

RESUMO

Occludin is a component of tight junctions, which are essential structural components of the blood-brain barrier. However, occludin is expressed in cells without tight junctions, implying additional functions. We determined the expression and localisation of occludin in astrocytes in cell culture and in human brain tissue, and sought novel binding partners using a proteomic approach. Expression was investigated by immunocytochemistry and immunoblotting in the 1321N1 astrocytoma cell line and ScienCell human primary astrocytes, and by immunohistochemistry in human autopsy brain tissue. Recombinant N- and C-terminal occludin was used to pull-down proteins from 1321N1 cell lysates and protein-binding partners identified by mass spectrometry analysis. Occludin was expressed in both the cytoplasm and nucleus of astrocytes in vitro and in vivo. Mass spectrometry identified binding to nuclear and cytoplasmic proteins, particularly those related to RNA metabolism and nuclear function. Occludin is expressed in several subcellular compartments of brain cell-types that do not form tight junctions and the expression patterns in cell culture reflect those in human brain tissue, indicating they are suitable model systems. Proteomic analysis suggests that occludin has novel functions in neuroepithelial cells that are unrelated to tight junction formation. Further research will establish the roles of these functions in both cellular physiology and in disease states.


Assuntos
Astrócitos/metabolismo , Astrocitoma/metabolismo , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Endoteliais/metabolismo , Ocludina/metabolismo , RNA/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Técnicas Citológicas , Feto , Humanos , Espectrometria de Massas , Proteômica
6.
J Neuroinflammation ; 13(1): 135, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27256292

RESUMO

BACKGROUND: Genetic risk factors for Alzheimer's disease imply that inflammation plays a causal role in development of the disease. Experimental studies suggest that microglia, as the brain macrophages, have diverse functions, with their main role in health being to survey the brain parenchyma through highly motile processes. METHODS: Using the Medical Research Council Cognitive Function and Ageing Studies resources, we have immunophenotyped microglia to investigate their role in dementia with Alzheimer's pathology. Cerebral cortex obtained at post-mortem from 299 participants was analysed by immunohistochemistry for cluster of differentiation (CD)68 (phagocytosis), human leukocyte antigen (HLA)-DR (antigen-presenting function), ionized calcium-binding adaptor molecule (Iba1) (microglial motility), macrophage scavenger receptor (MSR)-A (plaque-related phagocytosis) and CD64 (immunoglobulin Fcγ receptor I). RESULTS: The presence of dementia was associated positively with CD68 (P < 0.001), MSR-A (P = 0.010) and CD64 (P = 0.007) and negatively with Iba1 (P < 0.001). Among participants without dementia, the cognitive function according to the Mini-Mental State Examination was associated positively with Iba1 (P < 0.001) and negatively with CD68 (P = 0.033), and in participants with dementia and Alzheimer's pathology, positively with all microglial markers except Iba1. Overall, in participants without dementia, the relationship with Alzheimer's pathology was negative or not significant, and positive in participants with dementia and Alzheimer's pathology. Apolipoprotein E (APOE) ε2 allele was associated with expression of Iba1 (P = 0.001) and MSR-A (P < 0.001) and APOE ε4 with CD68, HLA-DR and CD64 (P < 0.001). CONCLUSIONS: Our findings raise the possibility that in dementia with Alzheimer's pathology, microglia lose motility (Iba-1) necessary to support neurons. Conversely, other microglial proteins (CD68, MSR-A), the role of which is clearance of damaged cellular material, are positively associated with Alzheimer's pathology and impaired cognitive function. In addition, our data imply that microglia may respond differently to Aß and tau in participants with and without dementia so that the microglial activity could potentially influence the likelihood of developing dementia, as supported by genetic studies, highlighting the complexity and diversity of microglial responses.


Assuntos
Doença de Alzheimer/patologia , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência/patologia , Metionina Sulfóxido Redutases/metabolismo , Microglia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Demência/complicações , Diagnóstico , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Proteínas dos Microfilamentos , Testes Neuropsicológicos , Receptores de IgG/metabolismo
7.
Neuropathol Appl Neurobiol ; 42(4): 377-89, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26095883

RESUMO

BACKGROUND: Intermediate-length cytosine-adenine-guanine repeat expansions in the ATXN2 gene (which encodes for Ataxin-2 protein) have been linked to increased risk for motor neurone disease/amyotrophic lateral sclerosis (ALS). We screened DNA from cases for which we had post-mortem brain tissue to enable characterization of the neuropathology associated with this mutation. METHODS: Polymerase chain reaction and sequencing of DNA from frozen brain tissue on a cohort of 178 amyotrophic lateral sclerosis (ALS) autopsy cases from the north of England and 159 controls was performed. This was followed by tinctorial staining and immunohistochemistry (including for Ataxin-2) on selected blocks from ALS cases with intermediate-length expansions (ATXN2-ALS), sporadic ALS cases and neurologically healthy controls. RESULTS: Four ALS cases with intermediate-length CAG repeat expansions within ATXN2 were identified. One such case also had a mutation of the C9ORF72 gene. All had lower motor neurone depletion, and three out of four cases had transactive response DNA binding protein 43 (TDP-43)-positive neuronal cytoplasmic inclusions (predominantly skein-like). No inclusions of aggregated polyglutamine proteins were identified. Ataxin-2 protein expression was largely granular and cytoplasmic with the most prominent staining observed in larger neurones. Ataxin-2 staining was variable both within and between cases, but no staining pattern that was specific for cases with ATXN2 mutations was seen. CONCLUSIONS: Intermediate expansions of the CAG repeat in ATXN2 are associated with ALS. They are mostly associated with TDP-43 proteinopathy, but not with 1C2-positive polyglutamine inclusions. In the nervous system, Ataxin-2 protein expression is predominantly seen in large neurones. There is no consistent histopathological hallmark that is unique to ATXN2-ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Ataxina-2/genética , Encéfalo/patologia , Corpos de Inclusão/patologia , Expansão das Repetições de Trinucleotídeos , Idoso , Encéfalo/metabolismo , Feminino , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo
8.
Neuropathol Appl Neurobiol ; 42(2): 167-79, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26095650

RESUMO

AIMS: Oxidative damage and an associated DNA damage response (DDR) are evident in mild cognitive impairment and early Alzheimer's disease, suggesting that neuronal dysfunction resulting from oxidative DNA damage may account for some of the cognitive impairment not fully explained by Alzheimer-type pathology. METHODS: Frontal cortex (Braak stage 0-II) was obtained from the Medical Research Council's Cognitive Function and Ageing Study cohort. Neurones were isolated from eight cases (four high and four low DDR) by laser capture microdissection and changes in the transcriptome identified by microarray analysis. RESULTS: Two thousand three hundred seventy-eight genes were significantly differentially expressed (1690 up-regulated, 688 down-regulated, P < 0.001) in cases with a high neuronal DDR. Functional grouping identified dysregulation of cholesterol biosynthesis, insulin and Wnt signalling, and up-regulation of glycogen synthase kinase 3ß. Candidate genes were validated by quantitative real-time polymerase chain reaction. Cerebrospinal fluid levels of 24(S)-hydroxycholesterol associated with neuronal DDR across all Braak stages (rs = 0.30, P = 0.03). CONCLUSIONS: A persistent neuronal DDR may result in increased cholesterol biosynthesis, impaired insulin and Wnt signalling, and increased GSK3ß, thereby contributing to neuronal dysfunction independent of Alzheimer-type pathology in the ageing brain.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Dano ao DNA/fisiologia , Neurônios/metabolismo , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/patologia , Western Blotting , Encéfalo/patologia , Feminino , Humanos , Imuno-Histoquímica , Microdissecção e Captura a Laser , Masculino , Neurônios/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Transcriptoma
9.
Neuropathology ; 36(2): 125-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26303227

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Mutação , Proteínas/genética , Fator de Transcrição TFIIIA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72 , Proteínas de Ciclo Celular , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Herança Multifatorial , Linhagem , Fenótipo , Proteínas/metabolismo , Fator de Transcrição TFIIIA/metabolismo
10.
Neuropathol Appl Neurobiol ; 41(4): 483-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25443110

RESUMO

AIMS: Population-based studies have shown that approximately 20% of the ageing population (aged 65 years and over) with dementia have little or no classical Alzheimer-type neuropathology. Cumulative DNA damage and a reduced capacity of DNA repair may result in neuronal dysfunction and contribute to cognitive impairment independent of Alzheimer-type pathology in the ageing brain. METHODS: We investigated expression of the DNA damage response (DDR)-associated molecules γH2AX and DNA-PKcs using immunohistochemistry and western blotting, and senescence-associated ß-galactosidase in the frontal association neocortex of cases with low levels of Alzheimer-type pathology (Braak & Braak stage 0-II), and explored their relationship to cognitive impairment in a population-representative sample from the Medical Research Council's Cognitive Function and Ageing Study cohort. RESULTS: Increases in both γH2AX(+) (r(s) = -0.36, P = 0.025) and DNA-PKcs(+) (r(s) = -0.39, P = 0.01) neuronal counts were associated with a lower Mini-Mental State Examination score. Increasing levels of senescence associated-ß-gal(+) pyramidal neurones were weakly associated with the total number of DNA-PKcs(+) neurones (P = 0.08), but not with traditional senescence-associated signalling molecules, including p53 and p16. CONCLUSION: The association between the neuronal DDR and cognitive impairment, independent of AD pathology in the ageing brain, may be suggestive of a causal link via neuronal dysfunction.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/genética , Encéfalo/metabolismo , Dano ao DNA , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Estudos de Coortes , Feminino , Histonas/metabolismo , Humanos , Masculino , Testes Neuropsicológicos , Estresse Oxidativo , Proteínas Quinases/metabolismo , Células Piramidais/metabolismo
11.
Acta Neuropathol ; 130(1): 63-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943887

RESUMO

GGGGCC repeat expansions of C9ORF72 represent the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We and others have proposed that RNA transcribed from the repeat sequence is toxic via sequestration of RNA-binding factors. Both GGGGCC-repeat (sense) and CCCCGG-repeat (antisense) molecules are detectable by fluorescence in situ hybridisation as RNA foci, but their relative expression pattern within the CNS and contribution to disease has not been determined. Blinded examination of CNS biosamples from ALS patients with a repeat expansion of C9ORF72 showed that antisense foci are present at a significantly higher frequency in cerebellar Purkinje neurons and motor neurons, whereas sense foci are present at a significantly higher frequency in cerebellar granule neurons. Consistent with this, inclusions containing sense or antisense derived dipeptide repeat proteins were present at significantly higher frequency in cerebellar granule neurons or motor neurons, respectively. Immunohistochemistry and UV-crosslinking studies showed that sense and antisense RNA molecules share similar interactions with SRSF2, hnRNP K, hnRNP A1, ALYREF, and hnRNP H/F. Together these data suggest that, although sense and antisense RNA molecules might be expected to be equally toxic via their shared protein binding partners, distinct patterns of expression in various CNS neuronal populations could lead to relative differences in their contribution to the pathogenesis of neuronal injury. Moreover in motor neurons, which are the primary target of pathology in ALS, the presence of antisense foci (χ (2), p < 0.00001) but not sense foci (χ (2), p = 0.75) correlated with mislocalisation of TDP-43, which is the hallmark of ALS neurodegeneration. This has implications for translational approaches to C9ORF72 disease, and furthermore interacting RNA-processing factors and transcriptional activators responsible for antisense versus sense transcription might represent novel therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Proteínas/genética , Proteínas/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72 , Cerebelo/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Neurônios Motores/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , RNA Antissenso
12.
J Neural Transm (Vienna) ; 122(7): 957-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25239189

RESUMO

The BrainNet Europe consortium assessed the reproducibility in the assignment of the type of frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein (TDP) 43 following current recommendations. The agreement rates were influenced by the immunohistochemical (IHC) method and by the classification strategy followed. p62-IHC staining yielded good uniform quality of stains, but the most reliable results were obtained implementing specific Abs directed against the hallmark protein TDP43. Both assessment of the type and the extent of lesions were influenced by the Abs and by the quality of stain. Assessment of the extent of the lesions yielded poor results repeatedly; thus, the extent of pathology should not be used in diagnostic consensus criteria. Whilst 31 neuropathologists typed 30 FTLD-TDP cases, inter-rater agreement ranged from 19 to 100 per cent, being highest when applying phosphorylated TDP43/IHC. The agreement was highest when designating Type C or Type A/B. In contrast, there was a poor agreement when attempting to separate Type A or Type B FTLD-TDP. In conclusion, we can expect that neuropathologist, independent of his/her familiarity with FTLD-TDP pathology, can identify a TDP43-positive FTLD case. The goal should be to state a Type (A, B, C, D) or a mixture of Types (A/B, A/C or B/C). Neuropathologists, other clinicians and researchers should be aware of the pitfalls whilst doing so. Agreement can be reached in an inter-laboratory setting regarding Type C cases with thick and long neurites, whereas the differentiation between Types A and B may be more troublesome.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/patologia , Corpos de Inclusão/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/patologia , Europa (Continente) , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Neuritos/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Estudos Retrospectivos , Proteína Sequestossoma-1 , Análise Serial de Tecidos , Ubiquitina/metabolismo
13.
Brain ; 137(Pt 7): 2040-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24866055

RESUMO

GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ(2) P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ(2) P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Trifosfato de Adenosina/farmacocinética , Esclerose Lateral Amiotrófica/patologia , Biotinilação , Encéfalo/patologia , Proteína C9orf72 , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Espectrometria de Massas , Neurônios/patologia , Proteínas Nucleares/metabolismo , Isótopos de Fósforo/farmacocinética , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fatores de Transcrição/metabolismo
14.
Neuropathol Appl Neurobiol ; 40(7): 802-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24861546

RESUMO

AIMS: Abnormalities of the brain microvasculature in Alzheimer's disease have led to the vascular hypothesis of the disease, which predicts that vascular changes precede neuronal dysfunction and degeneration. To determine the spectrum of endothelial injury in the elderly and its relation to Alzheimer-type neuropathology we investigated DNA damage in a population-based sample derived from the Medical Research Council Cognitive Function and Ageing Study. METHODS: We examined endothelial damage in frontal and temporal cortex (n = 97) using immunohistochemistry for γH2AX and DNA-protein kinase (DNA-PKcs). To determine the effects of endothelial DNA damage at the earliest stages of Alzheimer's pathology we further focused our analysis on cases classified as Braak 0-II and examined endothelial senescence using histochemistry for ß-galactosidase and the expression of genes related to DNA damage and senescence using quantitative polymerase chain reaction (qPCR). RESULTS: We demonstrated large variation in endothelial DNA damage which was not associated with Alzheimer's neuropathology. Endothelial DNA-PKcs correlated with neuronal and glial DNA-PKcs counts. Focusing our further analysis on Braak 0-II cases, qPCR analysis demonstrated a trend to increased TP53 (P = 0.064) in cases with high compared with low endothelial DNA damage which was supported by immunohistochemical analysis of p53. Endothelial ß-galactosidase expression was associated with increased neuronal (P = 0.033) and glial (P = 0.038), but not endothelial DNA-PKcs expression. CONCLUSIONS: Damage to brain endothelial cells occurs early in relation to, or independently of, Alzheimer pathology, and parallels that in neurones and glia. Endothelial DNA damage and senescence are a brain ageing process that may contribute to dysfunction of the neurovascular unit in some elderly individuals.


Assuntos
Doença de Alzheimer/genética , Senescência Celular/genética , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Dano ao DNA , Células Endoteliais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Lobo Frontal/irrigação sanguínea , Lobo Frontal/metabolismo , Humanos , Microvasos/metabolismo , Lobo Temporal/metabolismo
15.
Neuropathol Appl Neurobiol ; 40(6): 670-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24750229

RESUMO

AIMS: Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. METHODS: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. RESULTS: We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. CONCLUSION: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Neurônios Motores/metabolismo , Splicing de RNA , Idoso , Animais , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Medula Espinal/metabolismo
16.
Acta Neuropathol ; 127(3): 407-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442578

RESUMO

Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.


Assuntos
Degeneração Lobar Frontotemporal/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas/genética , Adulto , Fatores Etários , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Proteína C9orf72 , Estudos de Coortes , Expansão das Repetições de DNA , Feminino , Degeneração Lobar Frontotemporal/sangue , Degeneração Lobar Frontotemporal/mortalidade , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Progranulinas
17.
Acta Neuropathol ; 125(1): 95-109, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143228

RESUMO

A consistent clinical feature of amyotrophic lateral sclerosis (ALS) is the sparing of eye movements and the function of external sphincters, with corresponding preservation of motor neurons in the brainstem oculomotor nuclei, and of Onuf's nucleus in the sacral spinal cord. Studying the differences in properties of neurons that are vulnerable and resistant to the disease process in ALS may provide insights into the mechanisms of neuronal degeneration, and identify targets for therapeutic manipulation. We used microarray analysis to determine the differences in gene expression between oculomotor and spinal motor neurons, isolated by laser capture microdissection from the midbrain and spinal cord of neurologically normal human controls. We compared these to transcriptional profiles of oculomotor nuclei and spinal cord from rat and mouse, obtained from the GEO omnibus database. We show that oculomotor neurons have a distinct transcriptional profile, with significant differential expression of 1,757 named genes (q < 0.001). Differentially expressed genes are enriched for the functional categories of synaptic transmission, ubiquitin-dependent proteolysis, mitochondrial function, transcriptional regulation, immune system functions, and the extracellular matrix. Marked differences are seen, across the three species, in genes with a function in synaptic transmission, including several glutamate and GABA receptor subunits. Using patch clamp recording in acute spinal and brainstem slices, we show that resistant oculomotor neurons show a reduced AMPA-mediated inward calcium current, and a higher GABA-mediated chloride current, than vulnerable spinal motor neurons. The findings suggest that reduced susceptibility to excitotoxicity, mediated in part through enhanced GABAergic transmission, is an important determinant of the relative resistance of oculomotor neurons to degeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Regulação da Expressão Gênica/genética , Medula Espinal/metabolismo , Transmissão Sináptica/genética , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/prevenção & controle , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Medula Espinal/patologia , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
18.
Brain ; 135(Pt 1): 62-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22189570

RESUMO

Defects in the mitochondrial DNA replication enzyme, polymerase γ, are an important cause of mitochondrial disease with ∼25% of all adult diagnoses attributed to mutations in the POLG gene. Peripheral neuronopathy is often part of the clinical syndrome and can represent the most disabling feature. In spite of this, the molecular mechanisms underlying the neuronopathy remain to be elucidated and treatment strategies are limited. In the present study, we use a combined approach comprising clinical, electrophysiological, neuropathological and molecular genetic investigations to unravel the mechanisms underpinning peripheral neuronopathy in autosomal recessive polymerase γ-related disease. Electrophysiological assessments documented a dorsal root ganglionopathy in all 11 cases. Of the 11 cases, eight also showed changes consistent with motor fibre loss. Detailed neuropathological investigation of two patients confirmed the electrophysiological findings, revealing atrophy of posterior columns and striking neuronal cell loss from the dorsal root ganglia, which was accompanied by severe mitochondrial biochemical abnormalities involving respiratory chain complexes I and IV due to clonally-expanded mitochondrial DNA deletions and a significant reduction in mitochondrial DNA copy number in affected neurons. We propose that the respiratory chain defects, secondary to mitochondrial DNA deletion and depletion, are likely to be responsible for pathology observed in the dorsal root ganglion and the sensory ganglionopathy documented electrophysiologically.


Assuntos
DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Gânglios Espinais/fisiopatologia , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Adolescente , Adulto , DNA Polimerase gama , Eletrodiagnóstico , Feminino , Gânglios Espinais/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Condução Nervosa/fisiologia , Fenótipo
19.
Brain ; 135(Pt 3): 751-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22366792

RESUMO

Intronic expansion of the GGGGCC hexanucleotide repeat within the C9ORF72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis/motor neuron disease in both familial and sporadic cases. Initial reports indicate that this variant within the frontotemporal dementia/amyotrophic lateral sclerosis spectrum is associated with transactive response DNA binding protein (TDP-43) proteinopathy. The amyotrophic lateral sclerosis/motor neuron disease phenotype is not yet well characterized. We report the clinical and pathological phenotypes associated with pathogenic C9ORF72 mutations in a cohort of 563 cases from Northern England, including 63 with a family history of amyotrophic lateral sclerosis. One hundred and fifty-eight cases from the cohort (21 familial, 137 sporadic) were post-mortem brain and spinal cord donors. We screened DNA for the C9ORF72 mutation, reviewed clinical case histories and undertook pathological evaluation of brain and spinal cord. Control DNA samples (n = 361) from the same population were also screened. The C9ORF72 intronic expansion was present in 62 cases [11% of the cohort; 27/63 (43%) familial, 35/500 (7%) cases with sporadic amyotrophic lateral sclerosis/motor neuron disease]. Disease duration was significantly shorter in cases with C9ORF72-related amyotrophic lateral sclerosis (30.5 months) compared with non-C9ORF72 amyotrophic lateral sclerosis/motor neuron disease (36.3 months, P < 0.05). C9ORF72 cases included both limb and bulbar onset disease and all cases showed combined upper and lower motor neuron degeneration (amyotrophic lateral sclerosis). Thus, clinically, C9ORF72 cases show the features of a relatively rapidly progressive, but otherwise typical, variant of amyotrophic lateral sclerosis associated with both familial and sporadic presentations. Dementia was present in the patient or a close family member in 22/62 cases with C9ORF72 mutation (35%) based on diagnoses established from retrospective clinical case note review that may underestimate significant cognitive changes in late disease. All the C9ORF72 mutation cases showed classical amyotrophic lateral sclerosis pathology with TDP-43 inclusions in spinal motor neurons. Neuronal cytoplasmic inclusions and glial inclusions positive for p62 immunostaining in non-motor regions were strongly over-represented in the C9ORF72 cases. Extra-motor pathology in the frontal cortex (P < 0.0005) and the hippocampal CA4 subfield neurons (P < 0.0005) discriminated C9ORF72 cases strongly from the rest of the cohort. Inclusions in CA4 neurons were not present in non-C9ORF72 cases, indicating that this pathology predicts mutation status.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas/genética , Adulto , Idade de Início , Idoso , Esclerose Lateral Amiotrófica/psicologia , Bancos de Espécimes Biológicos , Encéfalo/patologia , Proteína C9orf72 , Transtornos Cognitivos/etiologia , Estudos de Coortes , DNA/genética , Expansão das Repetições de DNA , Giro Denteado/patologia , Inglaterra , Feminino , Humanos , Imuno-Histoquímica , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/patologia
20.
Alzheimers Res Ther ; 15(1): 47, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36895019

RESUMO

Although a variety of brain lesions may contribute to the pathological assessment of dementia, the relationship of these lesions to dementia, how they interact and how to quantify them remains uncertain. Systematically assessing neuropathological measures by their degree of association with dementia may lead to better diagnostic systems and treatment targets. This study aims to apply machine learning approaches to feature selection in order to identify critical features of Alzheimer-related pathologies associated with dementia. We applied machine learning techniques for feature ranking and classification to objectively compare neuropathological features and their relationship to dementia status during life using a cohort (n=186) from the Cognitive Function and Ageing Study (CFAS). We first tested Alzheimer's Disease and tau markers and then other neuropathologies associated with dementia. Seven feature ranking methods using different information criteria consistently ranked 22 out of the 34 neuropathology features for importance to dementia classification. Although highly correlated, Braak neurofibrillary tangle stage, beta-amyloid and cerebral amyloid angiopathy features were ranked the highest. The best-performing dementia classifier using the top eight neuropathological features achieved 79% sensitivity, 69% specificity and 75% precision. However, when assessing all seven classifiers and the 22 ranked features, a substantial proportion (40.4%) of dementia cases was consistently misclassified. These results highlight the benefits of using machine learning to identify critical indices of plaque, tangle and cerebral amyloid angiopathy burdens that may be useful for classifying dementia.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/metabolismo , Angiopatia Amiloide Cerebral/patologia , Aprendizado de Máquina , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA