Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(47): 23416-23425, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31690666

RESUMO

The interface between electron-donating (D) and electron-accepting (A) materials in organic photovoltaic (OPV) devices is commonly probed by charge-transfer (CT) electroluminescence (EL) measurements to estimate the CT energy, which critically relates to device open-circuit voltage. It is generally assumed that during CT-EL injected charges recombine at close-to-equilibrium energies in their respective density of states (DOS). Here, we explicitly quantify that CT-EL instead originates from higher-energy DOS site distributions significantly above DOS equilibrium energies. To demonstrate this, we have developed a quantitative and experimentally calibrated model for CT-EL at organic D/A heterointerfaces, which simultaneously accounts for the charge transport physics in an energetically disordered DOS and the Franck-Condon broadening. The 0-0 CT-EL transition lineshape is numerically calculated using measured energetic disorder values as input to 3-dimensional kinetic Monte Carlo simulations. We account for vibrational CT-EL overtones by selectively measuring the dominant vibrational phonon-mode energy governing CT luminescence at the D/A interface using fluorescence line-narrowing spectroscopy. Our model numerically reproduces the measured CT-EL spectra and their bias dependence and reveals the higher-lying manifold of DOS sites responsible for CT-EL. Lowest-energy CT states are situated ∼180 to 570 meV below the 0-0 CT-EL transition, enabling photogenerated carrier thermalization to these low-lying DOS sites when the OPV device is operated as a solar cell rather than as a light-emitting diode. Nonequilibrium site distribution rationalizes the experimentally observed weak current-density dependence of CT-EL and poses fundamental questions on reciprocity relations relating light emission to photovoltaic action and regarding minimal attainable photovoltaic energy conversion losses in OPV devices.

2.
Biomacromolecules ; 21(3): 1214-1221, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32031372

RESUMO

Deoxyribonucleic acid (DNA) and a self-doped conjugated polyelectrolyte, poly(4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S), are assembled for organic optoelectronics and bioelectronics. The DNA's helix-coil phase transition in water is studied as a function of composition by thermo-optical analysis. DNA and PEDOT-S are functionalized by using a surfactant, cetyltrimethylammonium chloride (CTMA), and DNA:CTMA, PEDOT-S:CTMA, and DNA:CTMA:PEDOT-S:CTMA complexes were characterized regarding thermal, optical, morphological, and structural properties. Finally, DNA and DNA:PEDOT-S mixtures are processed in water for fabricating organized films through brushing. The electrical properties of these films are characterized using an interdigitated electrode. The films show an electronic conductivity of ∼10-6-10-5 S/cm in a range of semiconductors.


Assuntos
DNA , Polímeros , Cetrimônio , Condutividade Elétrica , Polieletrólitos
3.
Sci Technol Adv Mater ; 21(1): 726-736, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33177954

RESUMO

The organic Eu3+-complex [Eu(TTA)3Phen] has been incorporated into the channels of surface-modified frustules from diatoms as a key material to absorb and convert UV-photons to visible luminescence. Systematic investigation results indicate that the organic Eu3+-complex encapsulated in the functionalized diatomite channels exhibits enhanced luminescence and longer lifetime, owning to the Eu(TTA)3Phen complex interacting with its surrounding silylating agents. The organic Eu3+-complex-anchored porous diatomite hybrid luminescent material was compounded with polyethylene terephthalate (PET) by using a mini-twin screw extruder to prepare a self-supporting film of the hybrid material. Besides, the UV absorption properties of the composite films were investigated. These films will potentially be related to the UV protection of photovoltaic devices.

4.
Nat Mater ; 17(2): 119-128, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29358765

RESUMO

Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

5.
Nat Mater ; 17(8): 703-709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013057

RESUMO

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

6.
Soft Matter ; 13(25): 4412-4417, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590474

RESUMO

Herein we utilize insulin to prepare amyloid based chiral helices with either right or left handed helicity. We demonstrate that the helices can be utilized as structural templates for the conducting polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S). The chirality of the helical assembly is transferred to PEDOT-S as demonstrated by polarized optical microscopy (POM) and Circular Dichroism (CD). Analysis of the helices by conductive atomic force microscopy (c-AFM) shows significant conductivity. In addition, the morphology of the template structure is stabilized by PEDOT-S. These conductive helical structures represent promising candidates in our quest for THz resonators.


Assuntos
Condutividade Elétrica , Insulina/química , Multimerização Proteica , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estereoisomerismo , Água/química
7.
J Am Chem Soc ; 138(34): 10935-44, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27479751

RESUMO

Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.

8.
Phys Rev Lett ; 114(12): 128701, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860774

RESUMO

The charge generation mechanism in organic photovoltaics is a fundamental yet heavily debated issue. All the generated charges recombine at the open-circuit voltage (V_{OC}), so that investigation of recombined charges at V_{OC} provides a unique approach to understanding charge generation. At low temperatures, we observe a decrease of V_{OC}, which is attributed to reduced charge separation. Comparison between benchmark polymer:fullerene and polymer:polymer blends highlights the critical role of charge delocalization in charge separation and emphasizes the importance of entropy in charge generation.

9.
J Am Chem Soc ; 136(32): 11331-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25025885

RESUMO

In this paper we studied carrier drift dynamics in APFO3:PC61BM solar cells of varied stoichiometry (2:1, 1:1, and 1:4 APFO3:PC61BM) over a wide time range, from subpicoseconds to microseconds with a combination of ultrafast optical electric field probing and conventional transient integrated photocurrent techniques. Carrier drift and extraction dynamics are strongly stoichiometry dependent: the speed of electron or hole drift increases with higher concentration of PC61BM or polymer, respectively. The electron extraction from a sample with 80% PC61BM takes place during hundreds of picoseconds, but slows down to sub-microseconds in a sample with 33% PC61BM. The hole extraction is less stoichiometry dependent: it varies form sub-nanoseconds to tens of nanoseconds when the PC61BM concentration changes from 33% to 80%. The electron extraction rate correlates with the conversion efficiency of solar cells, leading to the conclusion that fast electron motion is essential for efficient charge carrier separation preventing their geminate recombination.

10.
J Am Chem Soc ; 136(33): 11578-81, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25056482

RESUMO

A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV. Grazing incidence wide-angle X-ray scattering of PTNT thin films revealed a strong tendency for face-on π-stacking of the polymer backbone, which was retained in PTNT:fullerene blends. Corresponding solar cells featured a high open-circuit voltage of 0.9 V, a fill factor around 0.6, and a power conversion efficiency as high as 5% for >200 nm thick active layers, regardless of variations in blend stoichiometry and nanostructure. Moreover, efficiencies of >4% could be retained when thick active layers of ∼400 nm were employed. Overall, these values are the highest reported for a conjugated polymer with such a broad bandgap and are unprecedented in materials for tandem and particularly ternary blend photovoltaics. Hence, the newly developed tetracyclic lactam unit has significant potential as a conjugated building block in future organic electronic materials.

11.
Phys Chem Chem Phys ; 16(38): 20291-304, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24994122

RESUMO

Charge generation in organic solar cells is a fundamental yet heavily debated issue. This article gives a balanced review of different mechanisms proposed to explain efficient charge generation in polymer-fullerene bulk-heterojunction solar cells. We discuss the effect of charge-transfer states, excess energy, external electric field, temperature, disorder of the materials, and delocalisation of the charge carriers on charge generation. Although a general consensus has not been reached yet, recent findings, based on both steady-state and transient measurements, have significantly advanced our understanding of this process.

12.
Phys Chem Chem Phys ; 16(45): 24681-4, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25328039

RESUMO

The electrochemical and charge storage properties of different lignins inside biopolymer electrodes were studied and correlated with the chemical variations of the lignins as indicated from the nuclear magnetic resonance (NMR) spectroscopic data. The varying fractions of monolignols were found to correlate with charge storage properties. It was found that as the sinapyl to guaiacyl (S/G) ratio increased both the specific capacitance and charge capacity increased considerably. This indicates that quinones generated on S-units can contribute more to charge storage in the biopolymer electrodes.


Assuntos
Capacitância Elétrica , Lignina/química , Eletroquímica , Eletrodos , Espectroscopia de Ressonância Magnética
13.
Small ; 9(3): 363-8, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23055425

RESUMO

Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.


Assuntos
Eletrônica , Nanofios/química , Polímeros/química , Transistores Eletrônicos , Nanotecnologia
14.
Ambio ; 41 Suppl 2: 138-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434441

RESUMO

The efficiency of conversion of light to electrical energy with the help of conjugated polymers and molecules is rapidly improving. The optical absorption properties of these materials can be designed, and implemented via molecular engineering. Full coverage of the solar spectrum is thus feasible. Narrow absorption spectra allow construction of tandem solar cells. The poor transport properties of these materials require thin devices, which limits optical absorption. Alternative device geometries for these flexible materials compensate for the optical absorption by light trapping, and allow tandem cells.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Luz Solar
15.
J Mater Chem A Mater ; 10(19): 10768-10779, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35706705

RESUMO

The desired attributes of organic photovoltaics (OPV) as a low cost and sustainable energy harvesting technology demand the use of non-halogenated solvent processing for the photoactive layer (PAL) materials, preferably of low synthetic complexity (SC) and without compromising the power conversion efficiency (PCE). Despite their record PCEs, most donor-acceptor conjugated copolymers in combination with non-fullerene acceptors are still far from upscaling due to their high cost and SC. Here we present a non-halogenated and low SC ink formulation for the PAL of organic solar cells, comprising PTQ10 and PC61BM as donor and acceptor materials, respectively, showing a record PCE of 7.5% in blade coated devices under 1 sun, and 19.9% under indoor LED conditions. We further study the compatibility of the PAL with 5 different electron transport layers (ETLs) in inverted architecture. We identify that commercial ZnO-based formulations together with a methanol-based polyethyleneimine-Zn (PEI-Zn) chelated ETL ink are the most suitable interlayers for outdoor conditions, providing fill factors as high as 74% and excellent thickness tolerance (up to 150 nm for the ETL, and >200 nm for the PAL). In indoor environments, SnO2 shows superior performance as it does not require UV photoactivation. Semi-transparent devices manufactured entirely in air via lamination show indoor PCEs exceeding 10% while retaining more than 80% of the initial performance after 400 and 350 hours of thermal and light stress, respectively. As a result, PTQ10:PC61BM combined with either PEI-Zn or SnO2 is currently positioned as a promising system for industrialisation of low cost, multipurpose OPV modules.

16.
ChemSusChem ; 15(4): e202101888, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34927794

RESUMO

Optimization of a new system for organic solar cells is a multiparametric analysis problem that requires substantial efforts in terms of time and resources. The strong microstructure-dependent performance of polymer:polymer cells makes them particularly difficult to optimize, or to translate previous knowledge from spin coating into more scalable techniques. In this work, the photovoltaic performance of blade-coated devices was studied based on the promising polymer:polymer system PBDB-T and PF5-Y5 as donor and acceptor, respectively. Using the recently developed high-throughput methodology, the system was optimized for multiple variables, including solvent system, active layer composition, ratio, and thickness, among others, by fabricating more than 500 devices with less than 24 mg of each component. As a result, the power conversion efficiency of the blade-coated devices varied from 0.08 to 6.43 % in the best device. The performed statistical analysis of the large experimental data obtained showed that solvent selection had the major impact on the final device performance due to its influence on the active layer microstructure. As a conclusion, the use of the plot of the device efficiency in the Hansen space was proposed as a powerful tool to guide solvent selection in organic photovoltaics.


Assuntos
Energia Solar , Ensaios de Triagem em Larga Escala , Polímeros/química , Solventes , Luz Solar
17.
J Phys Chem Lett ; 13(50): 11696-11702, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36512444

RESUMO

1-Chloronaphthalene (CN) has been a common solvent additive in both fullerene- and nonfullerene-based organic solar cells. In spite of this, its working mechanism is seldom investigated, in particular, during the drying process of bulk heterojunctions composed of a donor:acceptor mixture. In this work, the role of CN in all-polymer solar cells is investigated by in situ spectroscopies and ex situ characterization of blade-coated PBDB-T:PF5-Y5 blends. Our results suggest that the added CN promotes self-aggregation of polymer donor PBDB-T during the drying process of the blend film, resulting in enhanced crystallinity and hole mobility, which contribute to the increased fill factor and improved performance of PBDB-T:PF5-Y5 solar cells. Besides, the nonradiative energy loss of the corresponding device is also reduced by the addition of CN, corresponding to a slightly increased open-circuit voltage. Overall, our observations deepen our understanding of the drying dynamics, which may guide further development of all-polymer solar cells.

18.
J Am Chem Soc ; 133(36): 14244-7, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848297

RESUMO

A new, low-band-gap alternating copolymer consisting of terthiophene and isoindigo has been designed and synthesized. Solar cells based on this polymer and PC(71)BM show a power conversion efficiency of 6.3%, which is a record for polymer solar cells based on a polymer with an optical band gap below 1.5 eV. This work demonstrates the great potential of isoindigo moieties as electron-deficient units for building donor-acceptor-type polymers for high-performance polymer solar cells.

19.
Chem Soc Rev ; 39(7): 2633-42, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20495731

RESUMO

In this critical review, we discuss the history and development of polymer devices wherein manipulation of the electronic conductivity by electrochemical redox processes in a conjugated polymer is used to form new functions. The devices employed are an electrochemical transistor, an electrolyte-gated field-effect transistor and light-emitting electrochemical cells, all of which combine doping/undoping of a conjugated polymer with modification of electronic transport (130 references).


Assuntos
Quimera/fisiologia , Eletroquímica/métodos , Eletrônica/métodos , Polímeros/química , Eletrólitos/química , Transporte de Elétrons , Luz
20.
Nano Lett ; 10(6): 2225-30, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20455557

RESUMO

Red and yellow phosphorescent insulin amyloid fibrils are used as guest-emitting species within a blue-emitting polyfluorene matrix in light-emitting diodes. The integration of the phosphorescent Ir-complex into the amyloid structures strongly improves the triplet exciton confinement and allows the fabrication of white-emitting device with a very low loading of phosphorescent complex. The overall performances of the devices are improved in comparison with the corresponding bare Ir-complexes. This approach opens a way to explore novel device architectures and to understand the exciton/charge transfer dynamics in phosphorescent light emitting diodes.


Assuntos
Luz , Proteínas/química , Amiloide/química , Medições Luminescentes , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA