Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36146057

RESUMO

In this work, composite coatings of chitosan and silver nanoparticles were presented as an antibacterial coating for orthopedic implants. Coatings were deposited on AISI 304L using the galvanic deposition method. In galvanic deposition, the difference of the electrochemical redox potential between two metals (the substrate and a sacrificial anode) has the pivotal role in the process. In the coupling of these two metals a spontaneous redox reaction occurs and thus no external power supply is necessary. Using this process, a uniform deposition on the exposed area and a good adherence of the composite coating on the metallic substrate were achieved. Physical-chemical characterizations were carried out to evaluate morphology, chemical composition, and the presence of silver nanoparticles. These characterizations have shown the deposition of coatings with homogenous and porous surface structures with silver nanoparticles incorporated and distributed into the polymeric matrix. Corrosion tests were also carried out in a simulated body fluid at 37 °C in order to simulate the same physiological conditions. Corrosion potential and corrosion current density were obtained from the polarization curves by Tafel extrapolation. The results show an improvement in protection against corrosion phenomena compared to bare AISI 304L. Furthermore, the ability of the coating to release the Ag+ was evaluated in the simulated body fluid at 37 °C and it was found that the release mechanism switches from anomalous to diffusion controlled after 3 h.

2.
Talanta ; 221: 121643, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076163

RESUMO

Contamination of water with nitrate ions is a significant problem that affects many areas of the world. For this reason, European legislation has set the maximum permissible concentration of nitrates in drinking water at 44 mg/L. Thus, it is clear that a continuous monitoring of nitrate ions is of high technological interest but it must be rapid, easy to perform and directly performable in situ. In this work we have developed a nanostructured sensor based on array of copper nanowires obtained with the simple method of galvanic deposition. The nanostructured sensors have a very short response time with a detection limit less than 10 µM. Different interfering species were tested finding a negligible effect except for the chloride ions. However, this problem has been solved by removing chloride ions from the water through a simple precipitation of chloride compounds with low solubility. Nanostructured sensors were also used to analyze real water samples (rain, river and drinking water). In the case of drinking water, we have measured a concentration of nitrate ions very close to the that measured by conventional laboratory techniques.

3.
J Nanosci Nanotechnol ; 10(12): 8328-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121335

RESUMO

A fabrication process of amorphous nanowires of Sn-Co alloys, based on electrodeposition into anodic alumina membranes, is described. It is shown that nanowires of tin-cobalt alloys with different compositions can be produced by varying electrodeposition time and concentration ratio of salts dissolved into the electrolytic bath. Importance of the chelating agent to produce amorphous Sn-Co alloys has also been addressed. Electrodepositions were carried out potentiostatically at -1 V versus Saturated Calomel Electrode and 60 degrees C for times ranging from 10 to 90 minutes; the atomic fraction of Co2+ in the aqueous electrolyte (Co2+/(Co2+ + Sn2+)) was varied from 0.33 to 0.67. Nanowires aspect ratio (height/width) was controlled by adjusting the deposition time. Alloys were characterized by scanning electron microscopy and X-ray diffraction; compositional analysis was performed by energy dispersive spectroscopy and induced coupled plasma. The highest concentration of Co in the alloy was found after 90 min of electrodeposition from a bath containing 67% of Co2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA