Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2301003120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695902

RESUMO

Clustered protocadherin (Pcdh) functions as a cell recognition molecule through the homophilic interaction in the central nervous system. However, its interactions have not yet been visualized in neurons. We previously reported PcdhγB2-Förster resonance energy transfer (FRET) probes to be applicable only to cell lines. Herein, we designed γB2-FRET probes by fusing FRET donor and acceptor fluorescent proteins to a single γB2 molecule and succeeded in visualizing γB2 homophilic interaction in cultured hippocampal neurons. The γB2-FRET probe localized in the soma and neurites, and FRET signals, which were observed at contact sites between neurites, eliminated by ethylene glycol tetraacetic acid (EGTA) addition. Live imaging revealed that the FRET-negative γB2 signals rapidly moved along neurites and soma, whereas the FRET-positive signals remained in place. We observed that the γB2 proteins at synapses rarely interact homophilically. The γB2-FRET probe might allow us to elucidate the function of the homophilic interaction and the cell recognition mechanism.


Assuntos
Neurônios , Protocaderinas , Neuritos , Corpo Celular , Comunicação Celular
2.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925888

RESUMO

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
3.
Acta Neuropathol ; 145(2): 235-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512060

RESUMO

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.


Assuntos
Miopatias Distais , Proteínas de Choque Térmico HSP40 , Animais , Camundongos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Músculo Esquelético/patologia , Chaperonas Moleculares/genética , Debilidade Muscular/patologia , Miopatias Distais/patologia , Camundongos Knockout
4.
Hepatol Res ; 53(6): 497-510, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781408

RESUMO

AIM: Differential metabolic risk factors of nonalcoholic fatty liver disease (NAFLD) in nonobese male adolescents were analyzed examining relationships between NAFLD and clinical parameters of metabolic syndrome, including exercise and soft drink consumption, in male adolescents. METHODS: In total, 134 male university students (nonobese, n = 78; obese, n = 56) who underwent the first-year health checkup were divided into the NAFLD and non-NAFLD groups based on abdominal ultrasonography (AUS) findings. Relationships between NAFLD and metabolic parameters, including body mass index (BMI) and AUS score, were examined in nonobese students. RESULTS: Metabolic factors associated with hypertension, abdominal fat, liver damage, dyslipidemia, and impaired glucose tolerance were significantly less common in nonobese students than in obese students. The aforementioned factors and soft drink consumption were significantly more common in the NAFLD group than in the non-NAFLD group. The univariate and multivariate analyses of nonobese students showed that the triglyceride level (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.01-1.10, p = 0.001) was higher and soft drink consumption (OR, 36.8; 95% CI, 3.69-368, p < 0.001) was more common in the NAFLD group than the non-NAFLD group. CONCLUSIONS: Triglyceride level and soft drink consumption could aid in the detection of NAFLD in nonobese male adolescents. Our findings could provide useful information related to NAFLD and metabolic syndrome in nonobese adolescents.

5.
Mol Cell ; 59(4): 685-97, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26257285

RESUMO

We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding, thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level.


Assuntos
DNA/genética , Técnicas de Sonda Molecular , Receptores Notch/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Elementos Facilitadores Genéticos , Camundongos Transgênicos , Dados de Sequência Molecular , Ligação Proteica
6.
Cleft Palate Craniofac J ; : 10556656231215717, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964536

RESUMO

OBJECTIVE: Measure the volume of air-containing space in children with cleft palate and assess age-related changes, recurrence rate of otitis media with effusion (OME) after tube removal, and temporal bone development trend based on time of tube placement. DESIGN: Interventional prospective study. SETTING: Cleft Lip and Palate Center at a Tertiary-level institution. PATIENTS/PARTICIPANTS: One hundred sixty-eight ears of 86 patients who visited our center from January 2018 to December 2019. INTERVENTIONS: We performed tympanometry (impedance audiometry) after tube placement. MAIN OUTCOME MEASURES: Recurrence (at least one episode of OME after tympanic membrane closure), tympanic cavity volumes, and timing of tube placement. RESULTS: The mean air-containing cavity volume was 1.62 mL, 2.99 mL, and 3.29 mL in patients aged 1, 2, and 3 years, respectively. A rapid increase in volume was observed around 2 years of age. Twenty-two (42.3%) of the 52 ears with pneumatic cavity volumes <3 mL, and four (14.3%) of the 28 ears with pneumatic cavity volumes ≥3 mL had recurrence. Tubes were placed at ages <1 year and ≥1 year in 28 and 62 ears, respectively. The pneumatic cavity volume tended to be greater in the ears with tube placement at age <1 year. CONCLUSION: This study provided insights into using pneumatic cavity volume measurements to determine the appropriate timing for tube removal. Tubes should be placed as early as possible (before the age of 2 years) for prolonged OME associated with children with cleft palate.

7.
Dev Dyn ; 251(3): 525-535, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34542211

RESUMO

BACKGROUND: Repressor element 1-silencing transcription factor (REST) is a master regulator that is highly expressed in multipotent stem cells to repress gene networks involving a wide range of biological processes. A recent study has suggested that REST might be involved in a misregulation of its target genes in the embryonic brain of offspring derived from aged fathers. However, detailed analyses of the REST function in spermatogenesis are lacking due to difficulty in the detection of REST protein in specific cell types. RESULTS: To determine localization of REST, we generated an epitope tag knock-in (KI) mouse line with the C-terminus insertion of a podoplanin (PA)-tag at an endogenous Rest locus by the CRISPR/Cas9 system. Localization of the PA-tag was confirmed in neural stem cells marked with Pax6 in the embryonic brain. Moreover, PA-tagged REST was detected in undifferentiated and differentiating spermatogonia as well as Sertoli cells in both neonatal and adult testes. CONCLUSIONS: We demonstrate that REST is expressed at the early step of spermatogenesis and suggest a possibility that REST may modulate the epigenetic state of male germline cells. Our KI mice may be useful for studying REST-associated molecular mechanisms of neurodevelopmental and age-related disorders.


Assuntos
Edição de Genes , Testículo , Animais , Epitopos/genética , Epitopos/metabolismo , Masculino , Camundongos , Proteínas Repressoras , Espermatogênese/genética , Espermatogônias/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo
8.
Nutr Neurosci ; 25(12): 2528-2535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590989

RESUMO

BACKGROUND: The hypothalamus receives ingested nutrient information via ascending gut-related projections and plays a significant role in the regulation of food intake. Human neuroimaging studies have observed changes in the activity or connectivity of the hypothalamus in response to nutrient ingestion. However, previous neuroimaging studies have not yet assessed differences in temporal changes of hypothalamic responses to various nutrients in humans. Thus a repeated measures functional magnetic resonance imaging (fMRI) study using 30-min scans was designed to examine differences in hypothalamic responses to various nutrients. METHODS: In this study, 18 healthy adults (mean age, 22.4 years; standard deviation, 4.8; age range, 19-39 years; 11 males and seven females) underwent fMRI sessions. On the day of each session, one of the four solutions (200 ml of monosodium glutamate, glucose, safflower oil emulsion, or saline) was administered to participants while fMRI scanning. RESULTS: Infused amino acid and glucose, but not lipid emulsion, increased lateral hypothalamic responses as compared to a saline infusion ([x, y, z] = [4, -4, -10], z = 2.96). In addition, only hypothalamic responses to saline, but not those to the infusion of other nutrients, elicited a subjective sensation of hunger. CONCLUSION: These findings suggest that lateral hypothalamic responses to ingested nutrients may mediate homeostatic sensations in humans.


Assuntos
Glucose , Hipotálamo , Masculino , Adulto , Feminino , Humanos , Adulto Jovem , Emulsões , Hipotálamo/metabolismo , Imageamento por Ressonância Magnética/métodos , Nutrientes
9.
J Infect Chemother ; 28(2): 266-272, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34887175

RESUMO

INTRODUCTION: The usefulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests in asymptomatic individuals has not been well validated, although they have satisfied sensitivity and specificity in symptomatic patients. In this study, we investigated the significance of IgM and IgG antibody titers against SARS-CoV-2 in the serum of asymptomatic healthy subjects. METHODS: From June 2020, we recruited 10,039 participants to the project named the University of Tokyo COVID-19 Antibody Titer Survey (UT-CATS), and measured iFlash-SARS-CoV-2 IgM and IgG (YHLO IgM and IgG) titers in the collected serum. For the samples with increased IgM or IgG titers, we performed additional measurements using Elecsys Anti-SARS-CoV-2 Ig (Roche total Ig) and Architect SARS-CoV-2 IgG (Abbott IgG) and investigated the reactivity to N, S1, and receptor binding domain (RBD) proteins. RESULTS: After setting the cutoff value at 5 AU/mL, 61 (0.61%) were positive for YHLO IgM and 104 (1.04%) for YHLO IgG. Few samples with elevated YHLO IgM showed reactivity to S1 or RBD proteins, and IgG titers did not increase during the follow-up in any samples. The samples with elevated YHLO IgG consisted of two groups: one reacted to S1 or RBD proteins and the other did not, which was reflected in the results of Roche total Ig. CONCLUSIONS: In SARS-CoV-2 seroepidemiological studies of asymptomatic participants, sufficient attention should be given to the interpretation of the results of YHLO IgM and IgG, and the combined use of YHLO IgG and Roche total Ig might be more reliable.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Voluntários Saudáveis , Humanos , Imunoglobulina G , Imunoglobulina M , Estudos Soroepidemiológicos
10.
J Infect Chemother ; 27(9): 1342-1349, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34158239

RESUMO

INTRODUCTION: The worldwide pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to date. Given that some of the patients with coronavirus disease 2019 (COVID-19) are asymptomatic, antibody tests are useful to determine whether there is a previous infection with SARS-CoV-2. In this study, we measured IgM and IgG antibody titers against SARS-CoV-2 in the serum of asymptomatic healthy subjects in The University of Tokyo, Japan. METHODS: From June 2020, we recruited participants, who were students, staff, and faculty members of The University of Tokyo in the project named The University of Tokyo COVID-19 Antibody Titer Survey (UT-CATS). Following blood sample collection, participants were required to answer an online questionnaire about their social and health information. We measured IgG and IgM titers against SARS-CoV-2 using iFlash-SARS-CoV-2 IgM and IgG detection kit which applies a chemiluminescent immunoassay (CLIA) for the qualitative detection. RESULTS: There were 6609 volunteers in this study. After setting the cutoff value at 10 AU/mL, 32 (0.48%) were positive for IgG and 16 (0.24%) for IgM. Of six participants with a history of COVID-19, five were positive for IgG, whereas all were negative for IgM. The median titer of IgG was 0.40 AU/mL and 0.39 AU/mL for IgM. Both IgG and IgM titers were affected by gender, age, smoking status, and comorbidities. CONCLUSIONS: Positive rates of IgG and IgM titers were relatively low in our university. Serum levels of these antibodies were affected by several factors, which might affect the clinical course of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Estudos Epidemiológicos , Humanos , Imunoglobulina G , Imunoglobulina M , Japão/epidemiologia
11.
BMC Med ; 18(1): 343, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208172

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive, degenerative muscular disorder and cognitive dysfunction caused by mutations in the dystrophin gene. It is characterized by excess inflammatory responses in the muscle and repeated degeneration and regeneration cycles. Neutral sphingomyelinase 2/sphingomyelin phosphodiesterase 3 (nSMase2/Smpd3) hydrolyzes sphingomyelin in lipid rafts. This protein thus modulates inflammatory responses, cell survival or apoptosis pathways, and the secretion of extracellular vesicles in a Ca2+-dependent manner. However, its roles in dystrophic pathology have not yet been clarified. METHODS: To investigate the effects of the loss of nSMase2/Smpd3 on dystrophic muscles and its role in the abnormal behavior observed in DMD patients, we generated mdx mice lacking the nSMase2/Smpd3 gene (mdx:Smpd3 double knockout [DKO] mice). RESULTS: Young mdx:Smpd3 DKO mice exhibited reduced muscular degeneration and decreased inflammation responses, but later on they showed exacerbated muscular necrosis. In addition, the abnormal stress response displayed by mdx mice was improved in the mdx:Smpd3 DKO mice, with the recovery of brain-derived neurotrophic factor (Bdnf) expression in the hippocampus. CONCLUSIONS: nSMase2/Smpd3-modulated lipid raft integrity is a potential therapeutic target for DMD.


Assuntos
Distrofia Muscular de Duchenne/genética , Esfingomielina Fosfodiesterase/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout
12.
J Neurosci ; 38(5): 1277-1294, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29317485

RESUMO

Cerebellar granule cell precursors (GCPs) and granule cells (GCs) represent good models to study neuronal development. Here, we report that the transcription factor myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse GC development. We found that Meis1 is expressed in GC lineage cells and astrocytes in the cerebellum during development. Targeted disruption of the Meis1 gene specifically in the GC lineage resulted in smaller cerebella with disorganized lobules. Knock-down/knock-out (KO) experiments for Meis1 and in vitro assays showed that Meis1 binds to an upstream sequence of Pax6 to enhance its transcription in GCPs/GCs and also suggested that the Meis1-Pax6 cascade regulates morphology of GCPs/GCs during development. In the conditional KO (cKO) cerebella, many Atoh1-positive GCPs were observed ectopically in the inner external granule layer (EGL) and a similar phenomenon was observed in cultured cerebellar slices treated with a bone morphogenic protein (BMP) inhibitor. Furthermore, expression of Smad proteins and Smad phosphorylation were severely reduced in the cKO cerebella and Meis1-knock-down GCPs cerebella. Reduction of phosphorylated Smad was also observed in cerebellar slices electroporated with a Pax6 knock-down vector. Because it is known that BMP signaling induces Atoh1 degradation in GCPs, these findings suggest that the Meis1-Pax6 pathway increases the expression of Smad proteins to upregulate BMP signaling, leading to degradation of Atoh1 in the inner EGL, which contributes to differentiation from GCPs to GCs. Therefore, this work reveals crucial functions of Meis1 in GC development and gives insights into the general understanding of the molecular machinery underlying neural differentiation from neural progenitors.SIGNIFICANCE STATEMENT We report that myeloid ectopic viral integration site 1 homolog (Meis1) plays pivotal roles in the regulation of mouse granule cell (GC) development. Here, we show Meis1 is expressed in GC precursors (GCPs) and GCs during development. Our knock-down and conditional knock-out (cKO) experiments and in vitro assays revealed that Meis1 is required for proper cerebellar structure formation and for Pax6 transcription in GCPs and GCs. The Meis1-Pax6 cascade regulates the morphology of GCs. In the cKO cerebella, Smad proteins and bone morphogenic protein (BMP) signaling are severely reduced and Atoh1-expressing GCPs are ectopically detected in the inner external granule layer. These findings suggest that Meis1 regulates degradation of Atoh1 via BMP signaling, contributing to GC differentiation in the inner EGL, and should provide understanding into GC development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Proteína Meis1/fisiologia , Fator de Transcrição PAX6/biossíntese , Fator de Transcrição PAX6/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Astrócitos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Grânulos Citoplasmáticos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Fosforilação , Gravidez , Proteínas Smad/metabolismo
14.
J Hum Genet ; 62(7): 717-721, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28331218

RESUMO

Aggrecan is a critical proteoglycan component of the extracellular matrix of the growth plates and articular cartilage and has a key role in the biophysical and biomechanical properties of cartilage. Recently, heterozygous mutations in the ACAN gene, which encodes aggrecan, have been identified in patients with short stature and accelerated bone age. We herein report another family with a heterozygous ACAN mutation associated with idiopathic short stature along with accelerated bone age and early-onset herniation of the lumbar discs at the levels of L1/2 through L5/S1. Whole-exome sequencing identified a novel heterozygous frameshift mutation in the ACAN gene (c.1744delT; p.Phe582fs*69) in all of the affected family members but not in the unaffected one, providing further evidence that ACAN haploinsufficiency causes short stature with advanced bone maturation. In addition, we advocate early-onset multiple disc herniation as a novel phenotype associated with ACAN haploinsufficiency.


Assuntos
Agrecanas/genética , Estatura/genética , Degeneração do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/genética , Mutação/genética , Sequência de Bases , Família , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Fenótipo
15.
J Med Virol ; 89(8): 1469-1476, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28252206

RESUMO

Adult T-cell leukemia/lymphoma (ATL) occurs in approximately 5% of individuals infected with human T-cell leukemia virus type 1 (HTLV-1). A high proviral load (PVL; more than four copies per 100 peripheral blood mononuclear cells (PBMCs) or 1.6 copies per 100 blood leukocytes) and being male are risk factors for ATL development. Whether anti-HTLV-1 antibody level is related to such risk is unknown. Here, PVL and antibody levels were examined using real-time PCR and other tests in 600 HTLV-1 positive screened Japanese blood donors to understand the relationship between PVL and antibody level in asymptomatic carriers and to gain insights toward better antibody testing for HTLV-1 infection. The 430 donors in whom proviral DNA was detected were considered as true positives for HTLV-1 infection. Among donors aged 40 years or older, more males than females had a PVL corresponding to more than 1.6% infected leukocytes, and an antibody titer below the median (P = 0.0018). In antibody tests using an HTLV-1 positive cell line or Env antigens there was a large discrepancy in antibody titer among 13 provirus-positive samples, probably suggesting that antibody-based screening tests should incorporate multiple HTLV-1 antigens, such as Gag and Env antigens.


Assuntos
Anticorpos Antivirais/sangue , Doadores de Sangue , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Provírus/isolamento & purificação , Carga Viral , Adolescente , Adulto , Idoso , Portador Sadio/imunologia , Portador Sadio/virologia , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Neurosci ; 34(14): 4786-800, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695699

RESUMO

In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cerebelo/citologia , Ácido Glutâmico/metabolismo , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Cerebelo/embriologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fatores de Transcrição/genética
17.
Neurobiol Dis ; 80: 1-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959061

RESUMO

Distinct classes of SOX10 mutations result in peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, collectively known as PCWH. Meanwhile, SOX10 haploinsufficiency caused by allelic loss-of-function mutations leads to a milder non-neurological disorder, Waardenburg-Hirschsprung disease. The cellular pathogenesis of more complex PCWH phenotypes in vivo has not been thoroughly understood. To determine the pathogenesis of PCWH, we have established a transgenic mouse model. A known PCWH-causing SOX10 mutation, c.1400del12, was introduced into mouse Sox10-expressing cells by means of bacterial artificial chromosome (BAC) transgenesis. By crossing the multiple transgenic lines, we examined the effects produced by various copy numbers of the mutant transgene. Within the nervous systems, transgenic mice revealed a delay in the incorporation of Schwann cells in the sciatic nerve and the terminal differentiation of oligodendrocytes in the spinal cord. Transgenic mice also showed defects in melanocytes presenting as neurosensory deafness and abnormal skin pigmentation, and a loss of the enteric nervous system. Phenotypes in each lineage were more severe in mice carrying higher copy numbers, suggesting a gene dosage effect for mutant SOX10. By uncoupling the effects of gain-of-function and haploinsufficiency in vivo, we have demonstrated that the effect of a PCWH-causing SOX10 mutation is solely pathogenic in each SOX10-expressing cellular lineage in a dosage-dependent manner. In both the peripheral and central nervous systems, the primary consequence of SOX10 mutations is hypomyelination. The complex neurological phenotypes in PCWH patients likely result from a combination of haploinsufficiency and additive dominant effect.


Assuntos
Doenças Desmielinizantes/genética , Doença de Hirschsprung/genética , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg/genética , Animais , Encéfalo/anormalidades , Encéfalo/ultraestrutura , Corpo Caloso/ultraestrutura , Doenças Desmielinizantes/embriologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Genes Dominantes , Haploinsuficiência , Doença de Hirschsprung/embriologia , Doença de Hirschsprung/patologia , Humanos , Camundongos , Camundongos Transgênicos , Crista Neural/anormalidades , Fenótipo , Células de Schwann/patologia , Nervo Isquiático/ultraestrutura , Síndrome de Waardenburg/embriologia , Síndrome de Waardenburg/patologia
18.
Int J Cancer ; 134(9): 2189-98, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24174293

RESUMO

We previously reported the increased serum mitochondrial creatine kinase (MtCK) activity in patients with hepatocellular carcinoma (HCC), mostly due to the increase in ubiquitous MtCK (uMtCK), and high uMtCK mRNA expression in HCC cell lines. We explored the mechanism(s) and the relevance of high uMtCK expression in HCC. In hepatitis C virus core gene transgenic mice, known to lose mitochondrial integrity in liver and subsequently develop HCC, uMtCK mRNA and protein levels were increased in HCC tissues but not in non-tumorous liver tissues. Transient overexpression of ankyrin repeat and suppressor of cytokine signaling box protein 9 (ASB9) reduced uMtCK protein levels in HCC cells, suggesting that increased uMtCK levels in HCC cells may be caused by increased gene expression and decreased protein degradation due to reduced ASB9 expression. The reduction of uMtCK expression by siRNA led to increased cell death, and reduced proliferation, migration and invasion in HCC cell lines. Then, consecutive 105 HCC patients, who underwent radiofrequency ablation with curative intent, were enrolled to analyze their prognosis. The patients with serum MtCK activity >19.4 U/L prior to the treatment had significantly shorter survival time than those with serum MtCK activity ≤ 19.4 U/L, where higher serum MtCK activity was retained as an independent risk for HCC-related death on multivariate analysis. In conclusion, high uMtCK expression in HCC may be caused by hepatocarcinogenesis per se but not by loss of mitochondrial integrity, of which ASB9 could be a negative regulator, and associated with highly malignant potential to suggest a poor prognosis.


Assuntos
Carcinoma Hepatocelular/enzimologia , Creatina Quinase Mitocondrial/metabolismo , Neoplasias Hepáticas/enzimologia , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Immunoblotting , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Prognóstico , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transfecção
19.
Cereb Cortex ; 23(10): 2293-308, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875867

RESUMO

The mammalian cerebral cortex can be tangentially subdivided into tens of functional areas with distinct cyto-architectures and neural circuitries; however, it remains elusive how these areal borders are genetically elaborated during development. Here we establish original bacterial artificial chromosome transgenic mouse lines that specifically recapitulate cadherin-6 (Cdh6) mRNA expression profiles in the layer IV of the somatosensory cortex and by detailing their cortical development, we show that a sharp Cdh6 gene expression boundary is formed at a mediolateral coordinate along the cortical layer IV as early as the postnatal day 5 (P5). By further applying mouse genetics that allows rigid cell fate tracing with CreERT2 expression, it is demonstrated that the Cdh6 gene expression boundary set at around P4 eventually demarcates the areal border between the somatosensory barrel and limb field at P20. In the P6 cortical cell pellet culture system, neurons with Cdh6 expression preferentially form aggregates in a manner dependent on Ca(2+) and electroporation-based Cdh6 overexpression limited to the postnatal stages perturbs area-specific cell organization in the barrel field. These results suggest that Cdh6 expression in the nascent cortical plate may serve solidification of the protomap for cortical functional areas.


Assuntos
Caderinas/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Caderinas/genética , Expressão Gênica , Camundongos , Camundongos Transgênicos , Córtex Somatossensorial/metabolismo
20.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA