Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257311

RESUMO

This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and efficient manufacture of organic and organometallic compounds with complicated characteristics and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to conduct organic syntheses and improve their efficiency.

2.
Chem Res Toxicol ; 34(6): 1417-1429, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33769796

RESUMO

The motive of this study is the rapid increase of industrial and domestic wastewater application for the growth of agricultural crops, which is closely associated with human health. In this study, the accumulation of eight heavy metals (Zn, Cu, Fe, Mn, Pb, Cr, Ni, and Cd) in the edible parts of five different species of common vegetables-cauliflower, bitter gourd, radish, pumpkin, and apple gourd-irrigated by two different water irrigation sources (wastewater/freshwater) grown in Pakistan's industrial and agricultural city Gujranwala and human health risks associated with the consumption of vegetables were evaluated. The mean concentration of each metal (Zn, Cu, Fe, Mn, Pb, Cr, Ni, and Cd) in five selected freshwater irrigated vegetables was observed as 48.91, 38.47, 133, 87.5, 4.62, 0.92, 1.46, and 0.36 mg/kg, respectively, while the mean concentration of each corresponding metal in wastewater irrigated vegetables was found to be 59.2, 49.5, 188, 90.9, 6.08, 2.66, 3.98, and 1.76 mg/kg, respectively. The estimated daily intake of metals (EDI), target health quotient (THQ), hazard index (HI), and target cancer risk (TCR) were computed to assess the impact of a raised level of metals in vegetables on human health. The grand THQ (G-THQ) values of individual freshwater irrigated vegetables were lower than the G-THQ values of individual wastewater irrigated vegetables and the G-THQ values of Cu, Cr, Pb, and Cd were found to be greater than the safety limit in wastewater irrigated vegetables. The HI values were found to be 7.94 and 4.01 for the vegetables irrigated with wastewater and freshwater, respectively. The TCR data reveal adverse carcinogenic risks induced by Ni, Cr, and Cd through the consumption of wastewater irrigated vegetables and Ni and Cd from the consumption of freshwater fed vegetables. The principal component analysis (PCA) to predict the sources of metals and Monte Carlo simulation were conducted to reduce the uncertainty in the data. The results indicate that higher significant health risks (carcinogenic and non-carcinogenic) would be posed to the adult population through the consumption of wastewater irrigated vegetables comparatively.


Assuntos
Água Doce/química , Metais Pesados/efeitos adversos , Verduras/química , Águas Residuárias/química , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Paquistão , Análise de Componente Principal , Medição de Risco
3.
Bioorg Chem ; 90: 103042, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226469

RESUMO

Three benzimidazolium salts (III-V) and respective selenium adducts (VI-VIII) were designed, synthesized and characterized by various analytical techniques (FT-IR and NMR 1H, 13C). Selected salts and respective selenium N-Heterocyclic carbenes (selenium-NHC) adducts were tested in vitro against Cervical Cancer Cell line (Hela), Breast Adenocarcinoma cell line (MCF-7), Retinal Ganglion Cell line (RGC-5) and Mouse Melanoma Cell line (B16F10) using MTT assay and the results were compared with standard drug 5-Fluorouracil. Se-NHC compounds and azolium salts showed significant anticancer potential. Molecular docking studies of compounds (VI, VII and VIII) showed strong binding energies and ligand affinity toward following angiogenic factors: VEGF-A (vascular endothelial growth factor A), EGF (human epidermal growth factor), HIF (Hypoxia-inducible factor) and COX-1 (Cyclooxygenase-1) suggesting that the anticancer activity of adducts (VI, VII and VIII) may be due to their strong anti-angiogenic effect. In addition, compounds III-VIII were screened for their antibacterial and antifungal potential. Adduct VI was found to be potent anti-fungal agent against A. Niger with zone of inhibition (ZI) value 27.01 ±â€¯0.251 mm which is better than standard drug Clotrimazole tested in parallel.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antifúngicos/síntese química , Antifúngicos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Aspergillus niger/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Crescimento Epidérmico/metabolismo , Escherichia coli/efeitos dos fármacos , Química Verde , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/metabolismo , Ligação Proteica , Carneiro Doméstico , Staphylococcus aureus/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Z Naturforsch C J Biosci ; 74(1-2): 17-23, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30500781

RESUMO

The current study was conducted to evaluate the antimicrobial, antioxidant, antileishmanial and cytotoxic potential of designed derivatives of 1,1'-(1,3-phenylenebis(methylene))bis(3-alkyl/aryl-1H-benzimidazol-3-ium) salts. The antibacterial potential of the test compounds was investigated against Staphylococcus aureus, Pseudomonas aeruginosa and two methicillin-resistant S. aureus (MRSA) strains (MRSA10, MRSA11), where compound 6 showed the best results. For brine shrimp lethality bioassay (BSLB), compound 6 again showed up to 100% mortality at 200 µg/mL and 56.7% mortality at 6.25 µg/mL. Antileishmanial assay was performed against Leishmania tropica at 20 µg/mL dosage, where 6 showed the most promising activity with 16.26% survival (83.74% mortality; IC50=14.63 µg/mL). The anticancer potential of the selected benzimidazole derivatives was evaluated against two selected cell lines (human colorectal cancer, HCT-116 and breast adenocarcinoma, MCF-7) using sulforhodamine B (SRB) assay. Compound 6 was found to be the most effective cytotoxic compound with 75% inhibition of HCT-116 proliferation at 1 mg/mL concentration. Succinctly, 6 exhibited impressive pharmacological potential that might be attributed to its higher lipophilic character owing to the longer N-substituted alkyl chains when compared to the other test compounds.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Antioxidantes/química , Benzimidazóis/química , Compostos Heterocíclicos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Leishmania/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Sais/química , Staphylococcus aureus/efeitos dos fármacos
5.
Microvasc Res ; 107: 17-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27133199

RESUMO

We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06µM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Nicotiana , Escopoletina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Fator 2 de Crescimento de Fibroblastos/química , Células HCT116 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Nus , Microvasos/efeitos dos fármacos , Microvasos/patologia , Proteína Quinase 3 Ativada por Mitógeno/química , Neovascularização Patológica , Fitoterapia , Plantas Medicinais , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Conformação Proteica , Ratos Sprague-Dawley , Escopoletina/isolamento & purificação , Escopoletina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Tempo , Nicotiana/química , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
RSC Adv ; 14(29): 21047-21064, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38962094

RESUMO

This review explores recent advancements in synthesizing quinoid heteroaryls, namely quinazoline and quinoline, vital in chemistry due to their prevalence in natural products and pharmaceuticals. It emphasizes the rapid, highly efficient, and economically viable synthesis achieved through gold-catalyzed cascade protocols. By investigating methodologies and reaction pathways, the review underscores exceptional yields attainable in the synthesis of quinoid heteroaryls. It offers valuable insights into accessing these complex structures through efficient synthetic routes. Various strategies, including cyclization, heteroarylation, cycloisomerization, cyclo-condensation, intermolecular and intramolecular cascade reactions, are covered, highlighting the versatility of gold-catalyzed approaches. The comprehensive compilation of different synthetic approaches and elucidation of reaction mechanisms contribute to a deeper understanding of the field. This review paves the way for future advancements in synthesizing quinoid heteroaryls and their applications in drug discovery and materials science.

7.
RSC Adv ; 14(28): 20365-20389, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38919284

RESUMO

The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.

8.
RSC Adv ; 14(25): 17389-17396, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38813128

RESUMO

Bacterial resistance towards antibiotics is a significant challenge for public health, and surface-enhanced Raman spectroscopy (SERS) has great potential to be a promising technique to provide detailed information about the effect of antibiotics against biofilms. SERS is employed to check the antibacterial potential of a lab synthesized drug ([bis(1,3-dipentyl-1H-imidazol-2(3H)-ylidene)silver(i)] bromide) against Bacillus subtilis and to analyze various SERS spectral features of unexposed and exposed Bacillus strains by observing biochemical changes in DNA, protein, lipid and carbohydrate contents induced by the lab synthesized imidazole derivative. Further, PCA and PLS-DA are employed to differentiate the SERS features. PCA was employed to differentiate the biochemical contents of unexposed and exposed Bacillus strains in the form of clusters of their representative SERS spectra and is also helpful in the pairwise comparison of two spectral data sets. PLS-DA provides authentic information to discriminate different unexposed and exposed Bacillus strains with 91% specificity, 93% sensitivity and 97% accuracy. SERS can be employed to characterize the complex and heterogeneous system of biofilms and to check the changes in spectral features of Bacillus strains by exposure to the lab synthesized imidazole derivative.

9.
RSC Adv ; 14(31): 22312-22325, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010920

RESUMO

Crystal violet (CV) dye, because of its non-biodegradability and harmful effects, poses a significant challenge for wastewater treatment. This study addresses the efficiency of easily accessible coal fly ash (CFA)-based adsorbents such as raw coal fly ash (RCFA) and surface enhanced coal fly ash (SECFA), in removing CV dye from waste effluents. Various analytical techniques such as FTIR, XRD, SEM, TEM, BET, zeta sizer and zeta potential were employed for the characterization of the adsorbents and dye-loaded samples. BET revealed that RCFA possesses a surface area of 19.370 m2 g-1 and SECFA of 27.391 m2 g-1, exhibiting pore volumes of 0.1365 cm3 g-1 and 0.1919 cm3 g-1 respectively. Zeta-sizer and potential analysis showed the static charges of RCFA as -27.3 mV and SECFA as -28.2 mV, with average particle sizes of 346.6 and 315.3 nm, respectively. Langmuir and Freundlich adsorption isotherms were also employed for adsorption studies. Employing central composite design (CCD) of response surface methodology (RSM), the maximum CV removal was 81.52% for RCFA and 97.52% for SECFA, providing one minute contact time, 0.0125 g adsorbent dose and 10 ppm dye concentration. From the thermodynamic studies, all the negative values of ΔG° showed that all the adsorption processes of both adsorbents were spontaneous in nature.

10.
RSC Adv ; 14(23): 16138-16149, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769951

RESUMO

In this study, the methyl orange (MO) dye has been degraded after screening several azo dyes due to its effective results and being toxic and carcinogenic to aquatic life and humans. An environmentally friendly, economical, and green method for water purification was used in this study using the photooxidative method. Several organic acids were screened for oxidative applications against various azo dyes but due to better results, methyl orange was selected for the whole study. Ascorbic acid, also known as vitamin C, was found to be best for photodegradation due to its high oxidative activity among various organic acids utilized. A newly developed photoreactor box has been used to conduct the photooxidation process. To evaluate the degradation efficiency of AsA, photooxidative activity was monitored periodically. When the dose of AsA was used at a contact time of 180 minutes, degradation efficiency was 96%. The analysis of degraded products was performed using HPLC and GC-MS. The nucleophilicity of HOMO-LUMO and MEPs was confirmed using density functional theory. For the optimization of the process, central composite design (CCD) in Response Surface Methodology (RSM) was utilized.

11.
ACS Omega ; 9(10): 12069-12083, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496983

RESUMO

This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater treatment.

12.
ACS Omega ; 9(6): 6861-6872, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371792

RESUMO

In the current study, surface-enhanced Raman scattering (SERS) was performed to evaluate the antibacterial activity of lab-synthesized drug (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt) and commercial drug tinidazole againstBacillus subtilis. The changes in SERS spectral features were studied for unexposed bacillus and exposed one with various dosages of drug synthesized in the lab (1-isopentyl-3-pentyl-1H-imidazole-3-ium bromide salt), and SERS bands were assigned associated with the drug-induced biochemical alterations in bacteria. Multivariate data analysis tools including principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) have been utilized to analyze the antibacterial activity of the imidazole derivative (lab drug). PCA was employed in differentiating all the SERS spectral data sets associated with the various doses of the lab-synthesized drug. There is clear discrimination among the spectral data sets of a bacterial strain treated with different concentrations of the drug, which are analyzed by PLS-DA with 86% area under the curve in receiver operating curve (ROC), 99% sensitivity, 100% accuracy, and 98% specificity. Various dominant spectral features are observed with a gradual increase in the different concentrations of the applied drug including 715, 850, 1002, 1132, 1237, 1396, 1416, and 1453 cm-1, which indicate the possible biochemical changes caused in bacteria during the antibacterial activity of the lab-synthesized drug. Overall, the findings show that imidazole and imidazolium compounds generated from tinidazole with various alkyl lengths in the amide substitution can be effective antibacterial agents with low cytotoxicity in humans, and these results indicate the efficiency of SERS in pharmaceuticals and biomedical applications.

13.
RSC Adv ; 14(10): 7112-7123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419676

RESUMO

Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.

14.
Comput Biol Chem ; 107: 107963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776812

RESUMO

N-heterocyclic carbene (NHC) based compounds are remarkably known for astonishing biological potentials. Coordination of metal center with these compounds can substantially improve the biological potential for better efficacy. In this context, three binuclear azolium salts (L1-L3) and subsequent selenium adducts L1Se-L3Se were synthesized and assured through analytical techniques. Synthesized compounds were also simulated through computational approach and results were compared with experimental observations that also relatable with biological potentials. Synthesized compounds were screened against bacterial strains and interestingly, the studied compounds showed good antimicrobial potential with MIC values of 7.01, 10.7 and 10.5 µM for S. Aureus (gram positive bacteria) while 12.5, 11.75 and 14.5 µM against E. Coli (gram negative bacteria). The studied compounds showed good antioxidant activity to scavenge DPPH free radicals among which azolium salts were found better in antioxidant potential (IC50 5.75-6.55 µg/mL) than their respective selenium compounds (IC50 9.50-12.75 µg/mL). The hemolytic assay against red blood cells showed that ligands are least toxic comparative to their Se-adducts and can be further trialed for In Vivo studies.


Assuntos
Compostos Heterocíclicos , Compostos Organosselênicos , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Organosselênicos/farmacologia , Escherichia coli , Staphylococcus aureus , Sais , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Testes de Sensibilidade Microbiana
15.
Curr Org Synth ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37622716

RESUMO

BACKGROUND: Azolium salts are the organic salts used as stable precursors for generating N-Heterocyclic Carbenes and their metal complexes. Azolium salts have also been reported to have significant biological potential. Hence, in the current study, four tetra-dentate azolium salts were derived from bis-azolium salts by a new synthetic strategy. METHODS: The tetra azolium salts have been synthesized by reacting the imidazole or methyl imidazole with dibromo xylene (meta, para)/ 1-bromo methyl imidazole or dibromo ethane resulting in the mono or bis azolium salts namely I-IV. V-VII have been obtained by reacting I with II-IV, resulting in the tetra azolium salts. Each product was analyzed by various analytical techniques, i.e., microanalysis, FT-IR, and NMR (1H & 13C). Salts V-VII were evaluated for their antiproliferative effect against human colon cancer cells (HCT-116) using MTT assay. RESULTS: Four chemical shifts for acidic protons between 8.5-9.5 δ ppm in 1H NMR and resonance of respective carbons around 136-146 δ ppm in 13C NMR indicated the successful synthesis of tetra azolium salts. Salt V showed the highest IC50 value, 24.8 µM among all synthesized compounds. CONCLUSION: Tetra-azolium salts may play a better cytotoxicity effect compared to mono-, bi-& tri-azolium salts.

16.
Photodiagnosis Photodyn Ther ; 41: 103262, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587860

RESUMO

BACKGROUND: Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES: Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY: Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS: Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS: SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Animais , Masculino , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Prata/química , Salmão , Ligantes , Sêmen , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Imidazóis
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121903, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209714

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is used to identify the biochemical changes associated with the antifungal activities of selenium and zinc organometallic complexes against Aspergillus niger fungus. These biochemical changes identified in the form of SERS peaks can help to understand the mechanism of action of these antifungal agents which is important for development of new antifungal drugs. The SERS spectral changes indicate the denaturation and conformational changes of proteins and fungal cell wall decomposition in complex exposed fungal samples. The SERS spectra of these organometallic complexes exposed fungi are analyzed by using statistical tools like principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA). PCA is employed to differentiate the SERS spectra of fungal samples exposed to ligands and complexes. The PLS-DA discriminated different groups of spectra with 99.8% sensitivity, 100% specificity, 98% accuracy and 86 % area under receiver operating characteristic (AUROC) curve.


Assuntos
Compostos Organometálicos , Selênio , Antifúngicos/farmacologia , Selênio/farmacologia , Zinco/farmacologia , Análise Espectral Raman/métodos , Análise Discriminante , Análise de Componente Principal
18.
Photodiagnosis Photodyn Ther ; 42: 103533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966865

RESUMO

BACKGROUND: Bacterial resistance against antibiotics remains a challenge and Raman Spectroscopy (SERS) may provide critical information concerning this. OBJECTIVES: In the current study, surface enhances Raman spectroscopy (SERS) has been used to determine the biochemical changes induced during the antibacterial activity of the in house synthesized imidazole derivative (1-benzyl-3-(sec­butyl)-1H-imidazole-3-ium bromide) in comparison to commercially available drugs (fasygien) against both gram-positive and gram-negative bacteria. METHODS: For this purpose, the antibacterial activity of this compound was assessed on Bacillus subtilis and Escherichia coli. The SERS spectral changes are detected which can be associated with the biochemical changes in the bacterial cells as a result of the application of both drugs, including fasygien and the imidazole derivative drug demonstrating the technique's potential for analyzing the antibacterial activities of drug candidates. RESULTS: The chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) were performed for the differentiation of SERS spectral data sets of unexposed, exposed with imidazole derivative and commercially available antibacterial drugs for two different bacteria including E. coli and Bacillus. CONCLUSIONS: PCA was found helpful for the qualitative differentiation of all drug-treated E. coli and Bacillus in the form of separate clusters of spectral data sets and PLS-DA discriminated the unexposed and the exposed bacteria with imidazole derivative and commercially available drug with 93% sensitivity and 96% specificity for Bacillus and with 90% sensitivity and 89% specificity for E. coli.


Assuntos
Bacillus subtilis , Fotoquimioterapia , Escherichia coli , Antibacterianos/farmacologia , Análise Espectral Raman/métodos , Brometos , Bactérias Gram-Negativas , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Imidazóis/farmacologia
19.
ACS Omega ; 8(39): 36460-36470, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810682

RESUMO

In the present research work, a selenium N-heterocyclic carbene (Se-NHC) complex/adduct was synthesized and characterized by using different analytical methods including FT-IR, 1HNMR, and 13CNMR. The antifungal activity of the Se-NHC complex against Aspergillus flavus (A. flavus) fungus was investigated with disc diffusion assay. Moreover, the biochemical changes occurring in this fungus due to exposure of different concentrations of the in-house synthesized compound are characterized by surface-enhanced Raman spectroscopy (SERS) and are illustrated in the form of SERS spectral peaks. SERS analysis yields valuable information about the probable mechanisms responsible for the antifungal effects of the Se-NHC complex. As demonstrated by the SERS spectra, this Se-NHC complex caused denaturation and conformational changes in the proteins as well as decomposition of the fungal cell membrane. The SERS spectra were analyzed using two chemometric tools such as principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). The fungal samples' SERS spectra were differentiated using PCA, while various groups of spectra were discriminated with ultrahigh sensitivity (98%), high specificity (99.7%), accuracy (100%), and area under the receiver operating characteristic curve (87%) using PLS-DA.

20.
RSC Adv ; 13(50): 35292-35304, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38053679

RESUMO

In the present study, Raman spectroscopy (RS) along with density functional theory (DFT) calculations have been performed for the successful characterization and confirmation of the formation of three different selenium-based N-heterocyclic carbene (NHC) complexes from their respective salts. For this purpose, mean RS features and DFT calculations of different ligands and their respective selenium NHC complexes are compared. The identified characteristic RS and DFT features, of each of these ligands and their selenium complexes, show that the polarizability of benzimidazolium rings increases after complex formation with selenium. This has been shown by the enhanced intensity of the associated Raman peaks, therefore, confirming the formation of newly formed bonds. The complex formation is also confirmed by the identification of several new peaks in the spectra of complexes and these Raman bands were absent in the spectra of the ligands. Moreover, Raman spectral data sets are analyzed using a multivariate data analysis technique of Principal Component Analysis (PCA) to observe the efficiency of the RS analysis. The results presented in this study have proved the RS technique, along with DFT, an undoubtedly fast approach for the confirmation of synthesis of selenium based NHC-complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA