Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38544265

RESUMO

We aimed to determine the feasibility, test-retest reliability and long-term stability of a novel method for assessing the force (torque)-velocity (cadence) profile and maximal dynamic force (MDF) during leg-pedaling using a friction-loaded isoinertial cycle ergometer and a high-precision power-meter device. Fifty-two trained male cyclists completed a progressive loading test up to the one-repetition maximum (1RM) on a cycle ergometer. The MDF was defined as the force attained at the cycle performed with the 1RM-load. To examine the test-retest reliability and long-term stability of torque-cadence values, the progressive test was repeated after 72 h and also after 10 weeks of aerobic and strength training. The participants' MDF averaged 13.4 ± 1.3 N·kg-1, which was attained with an average pedal cadence of 21 ± 3 rpm. Participants' highest power output value was attained with a cadence of 110 ± 16 rpm (52 ± 5% MDF). The relationship between the MDF and cadence proved to be very strong (R2 = 0.978) and independent of the cyclists' MDF (p = 0.66). Cadence values derived from this relationship revealed a very high test-retest repeatability (mean SEM = 4 rpm, 3.3%) and long-term stability (SEM = 3 rpm, 2.3%); despite increases in the MDF following the 10-week period. Our findings support the validity, reliability and long-term stability of this method for the assessment of the torque-cadence profile and MDF in cyclists.


Assuntos
Ciclismo , Ergometria , Humanos , Masculino , Torque , Reprodutibilidade dos Testes , , Teste de Esforço/métodos
2.
Med Sci Sports Exerc ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39231694

RESUMO

PURPOSE: This study compared the effects of off- and on-bike resistance training (RT) on endurance cycling performance as well as muscle strength, power and structure. METHODS: Well-trained male cyclists were randomly assigned to incorporate two sessions/week of off- (full squats, n = 12) or on-bike (all-out efforts performed against very high resistances and thus at very low cadences, n = 12) RT during 10 weeks, with all RT-related variables [number of sessions, sets, and repetitions, duration of recovery periods, and relative loads (70% of one-repetition maximum)] matched between the two groups. A third, control group (n = 13) did not receive any RT stimulus but all groups completed a cycling training regime of the same volume and intensity. Outcomes included maximum oxygen uptake (V̇O2max), off-bike muscle strength (full squat) and on-bike ('pedaling') muscle strength and peak power capacity (Wingate test), dual-energy X-ray absorptiometry-determined body composition (muscle/fat mass), and muscle structure (cross-sectional area, pennation angle). RESULTS: No significant within/between-group effect was found for V̇O2max. Both the off- (mean Δ = 2.6-5.8%) and on-bike (4.5-7.3%) RT groups increased squat and pedaling-specific strength parameters after the intervention compared to the control group (-5.8--3.9%) (p < 0.05) with no significant differences between them. The two RT groups also increased Wingate performance (4.1% and 4.3%, respectively, vs. -4.9% in the control group, p ≤ 0.018), with similar results for muscle cross-sectional area (2.5% and 2.2%, vs. -2.3% in the control group, p ≤ 0.008). No significant within/between-group effect was found for body composition. ConclusionsThe new proposed on-bike RT could be an effective alternative to conventional off-bike RT training for improving overall and pedaling-specific muscle strength, power, and muscle mass.

3.
J Sci Med Sport ; 27(9): 660-663, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839539

RESUMO

We quantified and compared the mechanical force demands relative to the maximum dynamic force (MDF) of 11 cyclists when pedaling at different intensities (ventilatory threshold, maximum lactate steady state, respiratory compensation point, and maximal aerobic power), cadences (free, 40, 60 and 80 rpm), and all-out resisted sprints. Relative force demands (expressed as %MDF) progressively increased with higher intensities (p < 0.001) and lower cadences (p < 0.001). Notwithstanding, relative force demands were low (<54 % MDF) for all conditions, even during the so-called 'torque training'. These results might be useful when programming on-bike resistance training to improve torque production capacity.


Assuntos
Ciclismo , Humanos , Ciclismo/fisiologia , Masculino , Adulto , Ácido Láctico/sangue , Torque , Adulto Jovem , Consumo de Oxigênio/fisiologia , Treinamento Resistido/métodos , Fenômenos Biomecânicos
4.
Eur J Sport Sci ; 22(8): 1149-1155, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34379572

RESUMO

Race walkers must conform to a unique gait pattern with no visible loss of contact with the ground. However, how the gait pattern affects the race walking economy is unclear. We investigated the energy cost (amount of energy spent per distance unit) at different race walking velocities and over a 25 km hybrid walk. Twenty-one international-level male race walkers (V˙O2peak 63.8 ± 4.3 ml kg-1 min-1, age 31 ± 5 y, body mass 68.1 ± 7.0 kg) performed an incremental treadmill test consisting of 4 × 4 min submaximal stages with 1 km h-1 increments, and a 25 km submaximal hybrid walk (treadmill-overground) on separate days. Energy cost was measured continuously during the submaximal test and at km 0-1, 6-7, 12-13, 18-19, 23-24 of the 25 km hybrid walk. The CRW was similar across the four submaximal stages where half the athletes completed them at a higher (1 km h-1) absolute velocity (-0.01-0.15 ± ∼0.65); range of standardised differences ±90% CL, with a tendency for higher performing athletes to have a lower CRW when this was analysed during absolute race walking velocities of 12, 13 and 14 km-1 for the entire cohort (0.46-0.49 ± ∼0.67). There was no substantial change in CRW from the start to the end of the 25 km walk for the entire cohort (0.08 ± 2.2; standardised change ±90% CL). Elite race walkers are characterised by having a similar energy cost among athletes who perform at the same relative exercise intensity, and substantially higher energetics than counterpart elite endurance runners.


Assuntos
Consumo de Oxigênio , Caminhada , Adulto , Atletas , Teste de Esforço , Marcha , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA