Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(12): 4459-4468, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35676378

RESUMO

Cell plastics in this study were fabricated with only unicellular green alga Chlamydomonas reinhardtii as raw materials. The sizes of cell-major axis as structures were 8.4 ± 1.2 µm, and the aspect ratios of those were 1.2 ± 0.1, showing homogeneous particle size. After optimizing extraction condition of intracellular contents, cell plastics were fabricated with the cells as ingredient components and the intracellular contents as matrix components. Those cell plastics were observed with scanning electron microscopy, displaying the smooth surfaces of the cell plastics at a low magnification level. However, the surface, especially exposed surface, were rough at high magnification level. Tensile strength test revealed that increasing the ratio of intracellular contents in the cell plastics until 21% led enhancing mechanical properties of Young's modulus and tensile strength; however, 25% of intracellular contents displayed decreases of those properties. As the optimal point, the cell plastic (21%), which contained 21% (w/w) of intracellular contents in cell plastics, showed 764 ± 100 MPa and 8.6 ± 5.2 MPa of Young's modulus and tensile strength. The cell plastics showed few plastic region and soon fractured, indicating the possibility that cells and intracellular contents could be electrostatically connected. Additionally, cells were shown as a negative charge and displayed the possibility to contribute electrically cell-gathering with intracellular ionic components. Therefore, cells and intracellular contents containing ionic metabolites could be electrostatically connected for giving the mechanical strength to cell plastics. In this study, we successfully demonstrated fabricating cell plastics with only cells for the first time and also showed the high possibility of conjugating each cell with the intracellular contents. KEY POINTS: • Cell plastics are fabricated with unicellular green algal cell directly. • Unicellular cells required to be conjugated for the fabrication with matrix. • Cells were conjugated with intracellular contents for cell-plastic fabrication.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Plásticos/metabolismo , Resistência à Tração
2.
Langmuir ; 35(47): 15051-15062, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31671263

RESUMO

We present here the construction of a self-assembled two-dimensional network at the liquid/solid interface using a hexagonal pyridine macrocycle which binds an organic cation in its intrinsic porous space by electrostatic interactions. For this purpose, a hexagonal pyridinylene-butadiynylene macrocycle (PyBM) having six octyloxymethyl groups, PyBM-C8, was synthesized. As guests, tropylium (Tr) tetrafluoroborate and trioxatriangulenium (TOTA) hexafluorophosphate were used. In this study, we focused on (i) the network patterns of PyBM-C8 which change in response to its concentration and (ii) the position of the guest immobilized in the porous space of the macrocycle. Scanning tunneling microscopy (STM) observations at the interface of 1,2,4-trichlorobenzene (TCB) and highly oriented pyrolytic graphite (HOPG) revealed that PyBM-C8 formed four different polymorphs, oblique, loose hexagonal, linear, and rectangular, depending on the solute concentration and annealing treatment. Solvent TCB molecules are likely coadsorbed to not only the intrinsically porous space of PyBM-C8 (internal TCB) but also the space outside of the macrocycle between its alkyl chains (external TCB) in most of the cases. Upon adding the guest cation, whereas small Tr was not visualized in the pore due to size mismatching, larger TOTA was clearly observed in each pore. In addition, based on high-resolution STM images of the rhombus packing pattern of PyBM-C8, we revealed experimentally that TOTA was placed at an off-center position of the deformed hexagonal macrocyclic core in the rhombus pattern. On the basis of the molecular mechanics calculations, we hypothesize that the off-center location of TOTA is due to deformation of the hexagonal macrocycle through interaction with two external TCB molecules located at opposite edges of the macrocyclic core. Symmetry breaking of the macrocyclic host framework induced by coadsorbed surrounding solvent molecules thus plays a significant role in host-guest complexation at the liquid/solid interface.

3.
Langmuir ; 34(21): 6036-6045, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29717878

RESUMO

We present here the construction of a self-assembled two-dimensional (2D) porous monolayer bearing a highly polar 2D space to study guest co-adsorption through electrostatic interactions at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-TeEG, having tetraethylene glycol (TeEG) groups at the end of the three alternating alkoxy chains connected by p-phenylene linkers was synthesized. As a reference host molecule, DBA-C10, having nonpolar C10 alkyl chains at three alternating terminals, was employed. As guest molecules, hexagonal phenylene-ethynylene macrocycles (PEMs) attached by triethylene glycol (TEG) ester and hexyl ester groups, PEM-TEG and PEM-C6, respectively, at each vertex of the macrocyclic periphery were used. Scanning tunneling microscopy observations at the 1,2,4-trichlorobenzene/highly oriented pyrolytic graphite interface revealed that PEM-TEG was immobilized in the pores formed by DBA-TeEG at higher probability because of electrostatic interactions such as dipole-dipole and hydrogen bonding interactions between oligoether units of the host and guest, in comparison to PEM-C6 with nonpolar groups. These observations are discussed based on molecular mechanics simulations to investigate the role of the polar functional groups. When a nonpolar host matrix formed by DBA-C10 was used, however, only phase separation and preferential adsorption were observed; virtually no host-guest complexation was discernible. This is ascribed to the strong affinity between the guest molecules which form by themselves densely packed van der Waals networks on the surface.

4.
Langmuir ; 33(19): 4601-4618, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28206764

RESUMO

Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.

5.
Langmuir ; 33(43): 12453-12462, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28968503

RESUMO

We present here hexagonal tiling using hexagonal phenylene-ethynylene and phenylene-butadiynylene macrocycles attached by alkyl ester groups, PEM-C6 and PBM-C8, respectively, or triethylene glycol ester groups, PEM-TEG and PBM-TEG, respectively, at each vertex of the macrocyclic periphery at the liquid/solid interface. In this study, we focused on the effects of macrocyclic core size and the chemical properties of side chains attached to macrocyclic cores as well as solute concentrations on the hexagonal geometry of self-assembled monolayers. STM observations at the 1,2,4-trichrolobenzene/graphite interface revealed that PEM-C6 formed a honeycomb structure by van der Waals interactions between the interdigitated alkyl chains. However, upon increasing solute concentration, it changed to more dense hexagonal structure (tentatively called loose hexagonal structure I). In contrast, PBM-C8 formed loose hexagonal structure II of a slightly different packing mode at low concentration, while at high concentration it formed a high-density hexagonal structure in which alkyl chains are not adsorbed on the surface (dense hexagonal structure). In the dense hexagonal structure, macrocyclic cores are linked by hydrogen bonds between the ester carbonyl oxygen and the aromatic hydrogen atoms of the neighboring macrocycles. The packing geometries of loose hexagonal structures of PEM-C6 and PBM-C8 are different due to the different distance between the attachment of the alkyl ester groups which are located in confined space. On the other hand, PEM-TEG and PBM-TEG formed dense hexagonal structures, similar to PBM-C8 at high concentration, with their TEG units not adsorbed on the surface.

6.
Langmuir ; 32(22): 5532-41, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183003

RESUMO

We have studied the self-assembly behavior of dehydro[24]annulene (D24A) derivatives 1, 2a-2d, and 3a-3c at the liquid/solid interface using scanning tunneling microscopy (STM). Both the relative placement and the nature of the four D24A substituents strongly influence the self-assembly pattern. Overall, the eight D24A derivatives examined in this study display seven types of 2D packing patterns. The D24A derivatives 1, 2a, and 3a have either two or four stearate groups and adopt face-on configurations of their macrocyclic cores with respect to the highly oriented pyrolytic graphite (HOPG) surface. Their 2D packing pattern is determined by the interchain spacings and number of stearate substituents. The D24A derivatives 2b-2d and 3b-3c bear hydrogen-bonding carbamate groups to further strengthen intermolecular interactions. Face-on patterns were also observed for most of these compounds, while an unstable edge-on self-assembly was observed in the case of 2b at room temperature. Stable edge-on self-assemblies of D24A derivatives were sought for this work as an important stepping stone to achieving the on-surface topochemical polymerization of these carbon-rich macrocycles into tubular π-conjugated nanowires. The overall factors determining the 2D packing patterns of D24As at the liquid/solid interface are discussed on the basis of theoretical simulations, providing useful guidelines for controlling the self-assembly pattern of future D24A macrocycles.

7.
Chemistry ; 21(14): 5520-7, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25688524

RESUMO

An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1-phenyloctane/graphite interface revealed that the molecules formed a self-assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two-dimensional chirality about the macrocyclic faces, which led to a unique conglomerate-type self-assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system.

8.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543503

RESUMO

Heterotrophic microorganism Escherichia coli LS5218 was cultured with flesh green alga Chlamydomonas reinhardtii C-9: NIES-2235 as a nutrient supplier. In order to evaluate the cell response of Escherichia coli with Chlamydomonas reinhardtii, Escherichia coli was evaluated with microbial methods and comprehensive gene transcriptional analyses. Escherichia coli with Chlamydomonas reinhardtii showed a specific growth rate (µmax) of 1.04 ± 0.27, which was similar to that for cells growing in Luria-Bertani medium (µmax = 1.20 ± 0.40 h-1). Furthermore, comparing the cellular responses of Escherichia coli in a green-algae-containing medium with those in the Luria-Bertani medium, transcriptomic analysis showed that Escherichia coli upregulated gene transcription levels related to glycolysis, 5-phospho-d-ribosyl-1-diphosphate, and lipid synthesis; on the other hand, it decreased the levels related to lipid degradation. In particular, the transcription levels were increased by 103.7 times on pgm (p * < 0.05 (p = 0.015)) in glycolysis, and decreased by 0.247 times on fadE (p * < 0.05 (p = 0.041)) in lipolysis. These genes are unique and could regulate the direction of metabolism; these responses possibly indicate carbon source assimilation as a cellular response in Escherichia coli. This paper is the first report to clarify that Escherichia coli, a substance-producing strain, directly uses Chlamydomonas reinhardtii as a nutrient supplier by evaluation of the cellular responses analyzed with microbial methods and transcriptome analysis.

9.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447612

RESUMO

In the current system, the disposal of plastic materials causes serious environmental pollution such as the generation of carbon dioxide and destruction of the ecosystem by micro-plastics. To solve this problem, bioplastics, biomass and biodegradable plastics have been developed. As part of our research, we have developed novel bioplastics called "cell-plastics", in which a unicellular green algal cell serves as a fundamental resource. The production of the cell-plastics would be expected to reduce environmental impact due to the usage of a natural product. Herein, to overcome the mechanical strength of cell-plastics, we used thermosetting epoxy and urethane resins containing Chlorella sp. as the green algae. We successfully fabricated thermosetting resins with a Chlorella sp. content of approximately 70 wt% or more. IR measurements revealed that the chemical structure of an epoxide or isocyanate monomer mixed with Chlorella sp. was modified, which suggests that the resins were hardened by the chemical reaction. In addition, we investigated the effect of thermosetting conditions such as temperature and compression for curing both resins. It was revealed that the Young's moduli and tensile strengths were controlled by thermosetting temperature and compression, whereas the elongation ratios of the resins were constant at low values regardless of the conditions.

10.
Bioengineering (Basel) ; 10(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627778

RESUMO

Cell plastics which are composed of unicellular green algal cells have been proposed in previous studies. While unicellular green algae can be freely arranged using fabrication processes, a matrix is required to attach the cells together. To date, although the cell contents collected from Chlamydomonas reinhardtii show the possibility of attaching cells, but it is unclear which components can be considered attachment factors. Therefore, in this study, C. reinhardtii cells were disrupted with sonication, and the components were separated and purified with hexane. The cell plastics with only 0.5 wt% of intermediate showed similar mechanical properties to those with 17 wt% and 25 wt% of cell components that were untreated with hexane, meaning that the purified intermediates could function as matrices. The purified intermediate was composed of approximately 60 wt% of protein as the main component, and proteomic analysis was performed to survey the main proteins that remained after hexane treatment. The protein compositions of the cell content and purified intermediate were compared via proteomic analysis, revealing that the existing ratios of 532 proteins were increased in the purified intermediate rather than in the cell content. In particular, the outer structure of each of the 49 proteins-the intensity of which was increased by over 10 times-had characteristically random coil conformations, containing ratios of proline and alanine. The information could suggest a matrix of cell plastics, inspiring the possibility to endow the cell plastics with more properties and functions.

11.
Chem Commun (Camb) ; 59(36): 5375-5378, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36939087

RESUMO

The remote electronic effects of chiral N-heterocyclic carbene catalysts on the asymmetric intramolecular Stetter reaction are investigated. The reaction rate and enantioselectivity were markedly influenced by a substituent at a remote position of the catalyst. The absolute configurations of the products are revised on the basis of X-ray diffraction. Density-functional theory calculations rationalize the improvement of the enantioselectivity using an electron-deficient catalyst.

12.
Glob Chall ; 5(8): 2100026, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377533

RESUMO

The current system of disposal of plastic materials fabricated from petroleum-based resources causes serious environmental pollution. To solve the problem, a bioplastic called "cell-plastic" is developed, in which unicellular green algal cells serve as a fundamental resource. This approach converts CO2 in the atmosphere directly into plastic products by exploiting the photosynthetic-driven proliferation of algal cells. Herein, cell-plastic films are fabricated using biodegradable and water-soluble polyvinyl alcohol (PVA) as a matrix, in which the effects of a cell-to-matrix mixing ratio and the chemical structure of the matrix on the mechanical and thermal properties are investigated. As a method of the chemical structural change, a cross-linking structure is introduced to the matrix by connecting hydroxy groups of PVA using aldehyde. The tensile tests reveal that the PVA-cell-plastic film maintains the mechanical properties of PVA film. Moreover, a cross-linked cell-plastic film exhibits high water absorption, making it suitable as a functional cell-plastic material.

13.
AMB Express ; 10(1): 112, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524300

RESUMO

Green alga Chlamydomonas reinhardtii has gained interest as a sustainable resource because it can be easily grown using CO2 as a carbon source owing to its high CO2 assimilating activity. Although the robustness of the cell wall of C. reinhardtii makes it difficult to extract its intracellular products, such property is beneficial when using the cell as an ingredient to fabricate "cell-plastic" in this study. The cell layer, which is a component of the cell-plastic, was prepared with an intercellular filler to connect each cell because C. reinhardtii is a single-cell strain. The cell layers were then repeatedly piled to increase the strength of the cell-plastic. To avoid slippage between the cell layers, they were covered with a small amount of a two-dimensional polymer to maintain the flat surface structure of the cell-plastic. Based on the evaluation, the cell-plastic has the potential to be a novel, sustainable plastic using ubiquitous green algal cells in nature.

14.
ACS Nano ; 10(2): 2113-20, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26838957

RESUMO

We present here the periodic functionalization of a two-dimensional (2D) porous molecular network using a tailored molecular building block. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, 1-isoDBA, having an isophthalic acid unit connected by an azobenzene linker to a C12 alkyl chain and five C14 chains, was designed and synthesized. After the optimization of monolayer preparation conditions at the 1,2,4-trichlorobezene (TCB)/graphite interface, scanning tunneling microscopy (STM) observation of the self-assembled monolayer of 1-isoDBA revealed the formation of extended domains of a porous honeycomb-type molecular network, which consists of periodically located nanowells each functionalized by a cyclic hexamer of hydrogen-bonded isophthalic acid units and those without functional groups. This result demonstrates that the present strategy based on precise molecular design is a viable route to site-specific functionalization of surface-confined nanowells. The nanowells of different size can be used for guest coadsorption of different guests, coronene COR and hexakis[4-(phenylethynyl)phenylethynyl]benzene HPEPEB, whose size and shape match the respective nanowells. STM observation of a ternary mixture (1-isoDBA/COR/HPEPEB) at the TCB/graphite interface revealed the site-selective immobilization of the two different guest molecules at the respective nanowells, producing a highly ordered three-component 2D structure.

15.
Chem Commun (Camb) ; 52(100): 14419-14422, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27901135

RESUMO

Cyclic arrays consisting of six zinc-porphyrin units are constructed by the supramolecular self-assembly of a dehydrobenzo[12]-annulene derivative having three zinc porphyrin units at the liquid/graphite interface. Binding with C60 furnishes cyclic hexameric arrays of the complexes on the surface.

16.
ACS Nano ; 8(8): 8683-94, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25089732

RESUMO

We present here the construction of self-assembled two-dimensional (2D) molecular networks that contain pores equipped with functional groups that promote guest-specific binding at the liquid/solid interface. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, DBA-F, having perfluoroalkyl groups at the end of the three alternating alkoxy chains connected by para-phenylene linkers was synthesized. For comparison DBA-H, having the same carbon backbone without fluorine substituents, was also prepared. STM observations revealed that these molecules formed porous 2D networks whose pores were decorated with either fluoroalkane or simple alkane perimeters. Hexakis(phenylethynyl)benzene, HPEB, and its octadecafluoro derivative, HPEB-F surrounded by 18 fluorine atoms, were employed as planar guest molecules of suitable size. The fluoroalkane-lined pores present in the network of DBA-F exhibited good binding ability toward both guest molecules via fluorophilicity and electrostatic interaction, respectively. In contrast the binding ability of the alkane-lined pore of the network of DBA-H for the fluorinated guest HPEB-F was poor as a result of weaker electrostatic interaction. Interestingly, with HPEB as a guest, this network underwent a periodical structural deformation through an induced-fit mechanism to form a superlattice structure consisting of free and occupied pores. These observations are discussed based on modeling experiments using molecular mechanics and quantum chemical methods to elucidate the roles of lateral noncovalent interactions and size matching between the pore and the guest molecules used for 2D guest binding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA