Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11165-11170, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31110011

RESUMO

The source of water (H2O) and hydroxyl radicals (OH), identified on the lunar surface, represents a fundamental, unsolved puzzle. The interaction of solar-wind protons with silicates and oxides has been proposed as a key mechanism, but laboratory experiments yield conflicting results that suggest that proton implantation alone is insufficient to generate and liberate water. Here, we demonstrate in laboratory simulation experiments combined with imaging studies that water can be efficiently generated and released through rapid energetic heating like micrometeorite impacts into anhydrous silicates implanted with solar-wind protons. These synergistic effects of solar-wind protons and micrometeorites liberate water at mineral temperatures from 10 to 300 K via vesicles, thus providing evidence of a key mechanism to synthesize water in silicates and advancing our understanding on the origin of water as detected on the Moon and other airless bodies in our solar system such as Mercury and asteroids.

2.
Proc Natl Acad Sci U S A ; 115(26): 6608-6613, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891720

RESUMO

The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a-silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.

3.
Microsc Microanal ; 26(1): 120-125, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858925

RESUMO

A new transmission electron microscopy (TEM) specimen preparation method that utilizes a combination of focused ion beam (FIB) methods and ultramicrotomy is demonstrated. This combined method retains the benefit of site-specific sampling by FIB but eliminates ion beam-induced damage except at specimen edges and allows recovery of many consecutive sections. It is best applied to porous and/or fine-grained materials that are amenable to ultramicrotomy but are located in bulk samples that are not. The method is ideal for unique samples from which every specimen is precious, and we demonstrate its utility on fine-grained material from the one-of-a-kind Paris meteorite. Compared with a specimen prepared by conventional FIB methods, the final sections are uniformly thin and free from re-deposition and curtaining artifacts common in FIB specimens prepared from porous, heterogeneous samples.

4.
Meteorit Planet Sci ; 54(1): 202-219, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30713419

RESUMO

Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 "Febo" in aerogel, which contains fine-grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine-grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Darkfield imaging and multi-detector energy-dispersive x-ray mapping were used to compare GEMS-like-objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS-like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant is present, consistent with ablation, melting, abrasion and mixing of the SiOx aerogel with crystalline Fe-sulfide and minor enstatite, high-Ni sulfide and augite identified by elemental mapping in the terminal particle. Thus, GEMS-like objects in "caches" of fine-grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.

5.
Proc Natl Acad Sci U S A ; 111(5): 1732-5, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449869

RESUMO

The solar wind (SW), composed of predominantly ∼1-keV H(+) ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system.

6.
Nat Astron ; 7(2): 170-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845884

RESUMO

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (-OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.

7.
Science ; 319(5862): 447-50, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18218892

RESUMO

The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

8.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170294

RESUMO

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA