Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Mol Biol ; 114(4): 74, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874679

RESUMO

Centromeric nucleosomes are determined by the replacement of the canonical histone H3 with the centromere-specific histone H3 (CENH3) variant. Little is known about the centromere organization in allopolyploid species where different subgenome-specific CENH3s and subgenome-specific centromeric sequences coexist. Here, we analyzed the transcription and centromeric localization of subgenome-specific CENH3 variants in the allopolyploid species Arabidopsis suecica. Synthetic A. thaliana x A. arenosa hybrids were generated and analyzed to mimic the early evolution of A. suecica. Our expression analyses indicated that CENH3 has generally higher expression levels in A. arenosa compared to A. thaliana, and this pattern persists in the hybrids. We also demonstrated that despite a different centromere DNA composition, the centromeres of both subgenomes incorporate CENH3 encoded by both subgenomes, but with a positive bias towards the A. arenosa-type CENH3. The intermingled arrangement of both CENH3 variants demonstrates centromere plasticity and may be an evolutionary adaption to handle more than one CENH3 variant in the process of allopolyploidization.


Assuntos
Arabidopsis , Centrômero , Histonas , Arabidopsis/genética , Centrômero/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Poliploidia , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética
2.
New Phytol ; 232(6): 2369-2383, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545570

RESUMO

Hybridization plays a decisive role in the evolution and diversification of angiosperms. However, the mechanisms of wide hybridization remain open because pre- and post-fertilization barriers limit the production and development of inter-subfamily/intergeneric zygotes, respectively. We examined hybridization between wheat and rice using an in vitro fertilization (IVF) system to bypass these barriers. Several gamete combinations of allopolyploid wheat-rice hybrid zygotes were successfully produced, and the developmental profiles of hybrid zygotes were analyzed. Hybrid zygotes derived from one rice egg cell and one wheat sperm cell ceased at the multicellular embryo-like structure stage. This developmental barrier was overcome by adding one wheat egg cell to the wheat-rice hybrid zygote. In the reciprocal combination, one wheat egg and one rice sperm cell, the resulting hybrid zygotes failed to divide. However, doubling the dosage of rice sperm cell allowed the hybrid zygotes to develop into plantlets. Rice chromosomes appeared to be progressively eliminated during the early developmental stage of these hybrid embryos, and c. 20% of regenerated plants showed abnormal morphology. These results suggest that hybrid breakdown can be overcome through optimization of gamete combinations, and the present hybrid will provide a new horizon for utilization of inter-subfamily genetic resources.


Assuntos
Oryza , Zigoto , Fertilização in vitro , Oryza/genética , Sementes/genética , Triticum/genética
3.
Chromosome Res ; 28(1): 7-17, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31792795

RESUMO

The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma de Planta , Genômica , Células Vegetais , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Engenharia Genética/métodos , Genômica/métodos , Imagem Molecular , Células Vegetais/metabolismo , Regiões Promotoras Genéticas , Transativadores/metabolismo , Dedos de Zinco
4.
Plant Cell Physiol ; 61(8): 1399-1407, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467978

RESUMO

Temperature is an essential physical factor that affects the plant life cycle. Almost all plant species have evolved a robust signal transduction system that enables them to sense changes in the surrounding temperature, relay this message and accordingly adjust their metabolism and cellular functions to avoid heat stress-related damage. Wheat (Triticum aestivum), being a cool-season crop, is very sensitive to heat stress. Any increase in the ambient temperature, especially at the reproductive and grain-filling stages, can cause a drastic loss in wheat yield. Heat stress causes lipid peroxidation due to oxidative stress, resulting in the damage of thylakoid membranes and the disruption of their function, which ultimately decreases photosynthesis and crop yield. The cell membrane/plasma membrane plays prominent roles as an interface system that perceives and translates the changes in environmental signals into intracellular responses. Thus, membrane lipid composition is a critical factor in heat stress tolerance or susceptibility in wheat. In this review, we elucidate the possible involvement of calcium influx as an early heat stress-responsive mechanism in wheat plants. In addition, the physiological implications underlying the changes in lipid metabolism under high-temperature stress in wheat and other plant species will be discussed. In-depth knowledge about wheat lipid reprograming can help develop heat-tolerant wheat varieties and provide approaches to solve the impact of global climate change.


Assuntos
Triticum/metabolismo , Resposta ao Choque Térmico/fisiologia , Temperatura , Termotolerância/fisiologia , Tilacoides/metabolismo
5.
Genome Res ; 27(3): 471-478, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28223399

RESUMO

During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteína Centromérica A/genética , Centrômero/genética , Polimorfismo Genético , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteína Centromérica A/química , Proteína Centromérica A/metabolismo , Evolução Molecular , Nucleossomos/metabolismo
6.
Cytogenet Genome Res ; 159(1): 48-53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31610539

RESUMO

Visualizing the spatiotemporal organization of the genome will improve our understanding of how chromatin structure and function are intertwined. Here, we describe a further development of the CRISPR/Cas9-based RNA-guided endonuclease-in situ labeling (RGEN-ISL) method. RGEN-ISL allowed the differentiation between vertebrate-type (TTAGGG)n and Arabidopsis-type (TTTAGGG)n telomere repeats. Using maize as an example, we established a combination of RGEN-ISL, immunostaining, and EdU labeling to visualize in situ specific repeats, histone marks, and DNA replication sites, respectively. The effects of the non-denaturing RGEN-ISL and standard denaturing FISH on the chromatin structure were compared using super-resolution microscopy. 3D structured illumination microscopy revealed that denaturation and acetic acid fixation impaired and flattened the chromatin. The broad range of adaptability of RGEN-ISL to different combinations of methods has the potential to advance the field of chromosome biology.


Assuntos
Amaryllidaceae/genética , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Replicação do DNA/genética , Zea mays/genética , Cromatina/metabolismo , Cromossomos/genética , DNA de Plantas/genética , Endonucleases/genética , Hibridização in Situ Fluorescente/métodos , RNA Guia de Cinetoplastídeos/genética , Telômero/genética
7.
New Phytol ; 222(3): 1652-1661, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30847946

RESUMO

Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleases/metabolismo , Genômica , RNA Guia de Cinetoplastídeos/metabolismo , Coloração e Rotulagem , Sequência de Bases , Centrômero/metabolismo , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 112(36): 11211-6, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26294252

RESUMO

The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest.


Assuntos
Autoantígenos/genética , Centrômero/genética , Proteínas Cromossômicas não Histona/genética , Haploidia , Plantas/genética , Mutação Puntual , Arabidopsis/genética , Arabidopsis/metabolismo , Autoantígenos/metabolismo , Western Blotting , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Genótipo , Histonas/genética , Hordeum/genética , Hordeum/metabolismo , Cinetocoros/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Genéticos , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
9.
J Appl Clin Med Phys ; 19(2): 144-153, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29369463

RESUMO

PURPOSE: We developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use. METHODS: For a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best-matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns. RESULTS: For the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low-reproducibility regions in the ROIs. CONCLUSION: Our system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pancreáticas/radioterapia , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Humanos , Imagens de Fantasmas , Prognóstico , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
10.
Chromosome Res ; 24(3): 285-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27072826

RESUMO

Genome instability is observed in several species hybrids. We studied the mechanisms underlying the genome instability in hexaploid hybrids of Napier grass (Pennisetum purpureum R.) and pearl millet (Pennisetum glaucum L.) using a combination of different methods. Chromosomes of both parental genomes are lost by micronucleation. Our analysis suggests that genome instability occurs preferentially in meristematic root tissue of hexaploid hybrids, and chromosome elimination is not only caused by centromere inactivation. Likely, beside centromere dysfunction, unrepaired DNA double-strand breaks result in fragmented chromosomes in synthetic hybrids.


Assuntos
Centrômero/metabolismo , Cromossomos de Plantas/genética , Instabilidade Genômica/genética , Meristema/genética , Pennisetum/genética , Raízes de Plantas/genética , Quimera/genética , Quebras de DNA de Cadeia Dupla , Hibridização Genética , Hibridização in Situ Fluorescente , Micronúcleos com Defeito Cromossômico , Melhoramento Vegetal , Poliploidia
11.
Chromosome Res ; 23(4): 709-18, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26134441

RESUMO

Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.


Assuntos
Avena/genética , Centrômero/genética , Histonas/genética , Hibridização Genética , Pennisetum/genética , Sementes , Motivos de Aminoácidos , Sequência de Aminoácidos , Avena/metabolismo , Centrômero/metabolismo , Cruzamentos Genéticos , Expressão Gênica , Histonas/química , Histonas/metabolismo , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Pennisetum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
12.
Chromosome Res ; 23(2): 277-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25688006

RESUMO

The organization of centromeric chromatin of diploid barley (Hordeum vulgare) encoding two (α and ß) CENH3 variants was analysed by super-resolution microscopy. Antibody staining revealed that both CENH3 variants are organized in distinct but intermingled subdomains in interphase, mitotic and meiotic centromeres. Artificially extended chromatin fibres illustrate that these subdomains are formed by polynucleosome clusters. Thus, a CENH3 variant-specific loading followed by the arrangement into specific intermingling subdomains forming the centromere region appears. The CENH3 composition and transcription vary among different tissues. In young embryos, most interphase centromeres are composed of both CENH3 variants, while in meristematic root cells, a high number of nuclei contain ßCENH3 mainly dispersed within the nucleoplasm. A similar distribution and no preferential arrangement of the two CENH3 variants in relationship to the spindle poles suggest that both homologs meet the same function in metaphase cells.


Assuntos
Centrômero/genética , Genes de Plantas , Variação Genética , Histonas/genética , Hordeum/genética , Regulação da Expressão Gênica de Plantas , Interfase/genética , Meiose , Mitose , Modelos Biológicos , Especificidade de Órgãos/genética , Transcrição Gênica
13.
Breed Sci ; 66(5): 676-682, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163583

RESUMO

This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement.

14.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 72(2): 139-48, 2016 02.
Artigo em Japonês | MEDLINE | ID: mdl-26902378

RESUMO

PURPOSE: We developed an evaluation method for easily calculating displacement directly between the carbon beam axis and positioning X-ray axis. METHODS: A verification image was acquired by irradiating an imaging plate with a carbon beam and X-ray. The X-ray passed through a lead plate inserted in the range compensator holder. The displacement was calculated on the verification image from the center of a wire irradiated with carbon using a multi leaf collimator (MLC) and a wire irradiated with X-ray also using MLC. The accuracy of the method was evaluated by moving the carbon beam axis, the X-ray axis, and the setup angle. The weekly changes of vertical and lateral beams in all rooms were also evaluated. RESULTS: The displacements of the carbon beam axis and the setup angle did not influence the calculation results, whereas the displacement of the X-ray axis did (R=0.999). The displacements including weekly changes were all less than 1.00 mm. CONCLUSION: An evaluation method for calculating the displacement directly and simply between the carbon beam axis and positioning X-ray axis was developed and verified. The weekly changes of displacement between axes were evaluated to be acceptable at our facility.


Assuntos
Tecnologia Radiológica/instrumentação , Tecnologia Radiológica/métodos , Carbono , Raios X
15.
J Appl Clin Med Phys ; 16(4): 100­111, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26219004

RESUMO

Highly accurate radiotherapy needs highly accurate patient positioning. At our facility, patient positioning is manually performed by radiology technicians. After the positioning, positioning error is measured by manually comparing some positions on a digital radiography image (DR) to the corresponding positions on a digitally reconstructed radiography image (DRR). This method is prone to error and can be time-consuming because of its manual nature. Therefore, we propose an automated measuring method for positioning error to improve patient throughput and achieve higher reliability. The error between a position on the DR and a position on the DRR was calculated to determine the best matched position using the block-matching method. The zero-mean normalized cross correlation was used as our evaluation function, and the Gaussian weight function was used to increase importance as the pixel position approached the isocenter. The accuracy of the calculation method was evaluated using pelvic phantom images, and the method's effectiveness was evaluated on images of prostate cancer patients before the positioning, comparing them with the results of radiology technicians' measurements. The root mean square error (RMSE) of the calculation method for the pelvic phantom was 0.23 ± 0.05 mm. The coefficients between the calculation method and the measurement results of the technicians were 0.989 for the phantom images and 0.980 for the patient images. The RMSE of the total evaluation results of positioning for prostate cancer patients using the calculation method was 0.32 ± 0.18 mm. Using the proposed method, we successfully measured residual positioning errors. The accuracy and effectiveness of the method was evaluated for pelvic phantom images and images of prostate cancer patients. In the future, positioning for cancer patients at other sites will be evaluated using the calculation method. Consequently, we expect an improvement in treatment throughput for these other sites.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Posicionamento do Paciente , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Erros de Configuração em Radioterapia/prevenção & controle , Automação , Humanos , Masculino , Pelve/diagnóstico por imagem , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
16.
Sci Rep ; 14(1): 10654, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724579

RESUMO

Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , Folhas de Planta , Vigna , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Vigna/genética , Vigna/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genômica/métodos , Genoma de Planta
17.
Radiat Oncol ; 19(1): 51, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649902

RESUMO

BACKGROUND: Radiation-induced liver damage (RILD) occasionally occurs following carbon-ion radiotherapy (CIRT) for liver tumors, such as hepatocellular carcinoma (HCC), in patients with impaired liver function disease. However, the associated risk factors remain unknown. The present study aimed to determine the risk factors of RILD after CIRT. METHODS: We retrospectively analyzed 108 patients with HCC treated with CIRT at the Osaka Heavy Ion Therapy Center between December 2018 and December 2022. RILD was defined as a worsening of two or more points in the Child-Pugh score within 12 months following CIRT. The median age of the patients was 76 years (range 47-95 years), and the median tumor diameter was 41 mm (range 5-160 mm). Based on the pretreatment liver function, 98 and 10 patients were categorized as Child-Pugh class A and B, respectively. We analyzed patients who received a radiation dose of 60 Gy (relative biological effectiveness [RBE]) in four fractions. The median follow-up period was 9.7 months (range 2.3-41.1 months), and RILD was observed in 11 patients (10.1%). RESULTS: Multivariate analysis showed that pretreatment Child-Pugh score B (p = 0.003, hazard ratio [HR] = 6.90) and normal liver volume spared from < 30 Gy RBE (VS30 < 739 cm3) (p = 0.009, HR = 5.22) were significant risk factors for RILD. The one-year cumulative incidences of RILD stratified by Child-Pugh class A or B and VS30 < 739 cm3 or ≥ 739 cm3 were 10.3% or 51.8% and 39.6% or 9.2%, respectively. CONCLUSION: In conclusion, the pretreatment Child-Pugh score and VS30 of the liver are significant risk factors for RILD following CIRT for HCC.


Assuntos
Carcinoma Hepatocelular , Radioterapia com Íons Pesados , Neoplasias Hepáticas , Lesões por Radiação , Humanos , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/radioterapia , Radioterapia com Íons Pesados/efeitos adversos , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Prognóstico , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Fatores de Risco , Fígado/efeitos da radiação , Fígado/patologia
18.
Plant Reprod ; 36(3): 273-284, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37227496

RESUMO

Hybridization plays an indispensable role in creating the diversity associated with plant evolution and genetic improvement of crops. Production of hybrids requires control of pollination and avoidance of self-pollination for species that are predominantly autogamous. Hand emasculation, male sterility genes or male gametocides have been used in several plant species to induce pollen sterility. However, in cowpea (Vigna unguiculata (L.) Walp), a self-pollinated cleistogamous dryland crop, only hand emasculation is used, but it is tedious and time-consuming. In this study, male sterility was effectively induced in cowpea and two dicotyledonous model species (Arabidopsis thaliana (L.) Heynh. and Nicotiana benthamiana Domin) using trifluoromethanesulfonamide (TFMSA). Pollen viability assays using Alexander staining showed that 30 ml of 1000 mg/l TFMSA with two-time treatments of one-week interval at the early stage of the reproductive phase under field or greenhouse conditions induced 99% pollen sterility in cowpea. TFMSA treatment induced non-functional pollen in diploid A. thaliana at two-time treatment of 10 ml of 125-250 mg/l per plant and N. benthamiana at two-time treatment of 10 ml of 250-1000 mg/l per plant. TFMSA-treated cowpea plants produced hybrid seeds when used as the female parent in crosses with non-treated plants used as male parents, suggesting that TFMSA had no effect on female functionality in cowpea. The ease of TFMSA treatment and its effectiveness to induce pollen sterility in a wide range of cowpea genotypes, and in the two model plant species tested in this study, may expand the scope of techniques for rapid pollination control in self-pollinated species, with potential applications in plant breeding and plant reproduction science.


Assuntos
Infertilidade Masculina , Magnoliopsida , Vigna , Masculino , Humanos , Vigna/genética , Melhoramento Vegetal , Magnoliopsida/genética , Genes de Plantas , Infertilidade Masculina/genética
19.
Methods Mol Biol ; 2672: 315-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335486

RESUMO

Fluorescence in situ hybridization (FISH) has been widely used to visualize target DNA sequences in fixed chromosome samples by denaturing the dsDNA to allow complementary probe hybridization, thus damaging the chromatin structure by harsh treatments. To overcome this limitation, a CRISPR/Cas9-based in situ labeling method was developed, termed CRISPR-FISH. This method is also known as RNA-guided endonuclease-in situ labeling (RGEN-ISL). Here we present different protocols for the application of CRISPR-FISH on acetic acid: ethanol or formaldehyde-fixed nuclei and chromosomes as well as tissue sections for labeling repetitive sequences in a range of plant species. In addition, methods on how immunostaining can be combined with CRISPR-FISH are provided.


Assuntos
Sistemas CRISPR-Cas , Cromossomos , Hibridização in Situ Fluorescente/métodos , Sistemas CRISPR-Cas/genética , DNA , Sequências Repetitivas de Ácido Nucleico
20.
Sci Rep ; 13(1): 15001, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696863

RESUMO

Globally, bread wheat (Triticum aestivum) is one of the most important staple foods; when exposed to drought, wheat yields decline. Although much research has been performed to generate higher yield wheat cultivars, there have been few studies on improving end-product quality under drought stress, even though wheat is processed into flour to produce so many foods, such as bread, noodles, pancakes, cakes, and cookies. Recently, wheat cultivation has been affected by severe drought caused by global climate change. In previous studies, seed shrinkage was observed in wheat exposed to continuous drought stress during seed development. In this study, we investigated how progressive drought stress affected seed development by metabolomic and transcriptomic analyses. Metabolite profiling revealed the drought-sensitive line reduced accumulation of proline and sugar compared with the water-saving, drought-tolerant transgenic line overexpressing the abscisic acid receptor TaPYL4 under drought conditions in spikelets with developing seeds. Meanwhile, the expressions of genes involved in translation, starch biosynthesis, and proline and arginine biosynthesis was downregulated in the drought-sensitive line. These findings suggest that seed shrinkage, exemplifying a deficiency in endosperm, arose from the hindered biosynthesis of crucial components including seed storage proteins, starch, amino acids, and sugars, ultimately leading to their inadequate accumulation within spikelets. Water-saving drought tolerant traits of wheat would aid in supporting seed formation under drought conditions.


Assuntos
Secas , Triticum , Triticum/genética , Transcriptoma , Sementes/genética , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA