Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 206(3): 983-989, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754513

RESUMO

Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi.


Assuntos
Interações Hospedeiro-Parasita , Lactonas/metabolismo , Micorrizas/fisiologia , Striga/fisiologia , Zea mays/parasitologia , Especificidade de Hospedeiro , Lactonas/química , Lactonas/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Simbiose , Zea mays/química , Zea mays/metabolismo
2.
Nat Commun ; 14(1): 2810, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208330

RESUMO

Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.


Assuntos
COVID-19 , Vacinas , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Motivo de Reconhecimento de RNA , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Cell Rep Med ; 4(8): 101134, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586325

RESUMO

VLPCOV-01 is a lipid nanoparticle-encapsulated self-amplifying RNA (saRNA) vaccine that expresses a membrane-anchored receptor-binding domain (RBD) derived from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. A phase 1 study of VLPCOV-01 is conducted (jRCT2051210164). Participants who completed two doses of the BNT162b2 mRNA vaccine previously are randomized to receive one intramuscular vaccination of 0.3, 1.0, or 3.0 µg VLPCOV-01, 30 µg BNT162b2, or placebo. No serious adverse events have been reported. VLPCOV-01 induces robust immunoglobulin G (IgG) titers against the RBD protein that are maintained up to 26 weeks in non-elderly participants, with geometric means ranging from 5,037 (95% confidence interval [CI] 1,272-19,940) at 0.3 µg to 12,873 (95% CI 937-17,686) at 3 µg compared with 3,166 (95% CI 1,619-6,191) with 30 µg BNT162b2. Neutralizing antibody titers against all variants of SARS-CoV-2 tested are induced. VLPCOV-01 is immunogenic following low-dose administration. These findings support the potential for saRNA as a vaccine platform.


Assuntos
COVID-19 , Vacinas , Humanos , Pessoa de Meia-Idade , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , SARS-CoV-2/genética , RNA , COVID-19/prevenção & controle , Vacinas de mRNA
4.
Chem Commun (Camb) ; (4): 514-5, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12638976

RESUMO

The reduction of carbonyl compounds 1a-h using Ni-Al alloy in water under reflux proceeded to give the corresponding methylene compounds 2a-h within 2 h in 89.0-99.8% relative yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA