RESUMO
The current study aimed to test the antiproliferative activity of three azafuramidines (X, Y, and Z) against three different human cell lines; liver HepG2, breast MCF-7, and bone U2OS. And to explore the molecular mechanism(s) of the antiproliferative activity of these derivatives. The three new azafuramidines demonstrated a potent cytotoxicity at < 2 µM against the three cell lines investigated. The azafuramidines were highly selective with selectivity index â¼ 47 - 61 folds indicating safety to the normal cells. In the scratch assay, azafuramidines significantly reduced the percentage of wound healing indicating ability to prevent or reduce metastasis. Derivatives X and Z arrested the HepG2 cells at S and G2/M phases detected by the flow cytometry. Derivatives X, Y, and Z elevated the apoptosis of HepG2 cells by â¼ 71 %, 66 %, and 59 %, respectively. Derivatives X and Z were superior to derivative Y. The potent antiproliferative, cell cycle arrest, and pro-apoptotic efficacy of these chlorophenyl derivatives could be attributed to their ability of inducing the overexpression of p53, p21, and p27. These derivatives had the potential to act as anticancer agents and merit further investigations.
Assuntos
Antineoplásicos , Benzamidinas , Humanos , Antineoplásicos/farmacologia , Apoptose , Benzamidinas/química , Benzamidinas/farmacologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2RESUMO
For amputees, amputation is a devastating experience. Transfemoral amputees require an artificial lower limb prosthesis as a replacement for regaining their gait functions after amputation. Microprocessor-based transfemoral prosthesis has gained significant importance in the last two decades for the rehabilitation of lower limb amputees by assisting them in performing activities of daily living. Commercially available microprocessor-based knee joints have the needed features but are costly, making them beyond the reach of most amputees. The excessive cost of these devices can be attributed to custom sensing and actuating mechanisms, which require significant development cost, making them beyond the reach of most amputees. This research contributes to developing a cost-effective microprocessor-based transfemoral prosthesis by integrating off-the-shelf sensing and actuating mechanisms. Accordingly, a three-level control architecture consisting of top, middle, and low-level controllers was developed for the proposed prosthesis. The top-level controller is responsible for identifying the amputee intent and mode of activity. The mid-level controller determines distinct phases in the activity mode, and the low-level controller was designed to modulate the damping across distinct phases. The developed prosthesis was evaluated on unilateral transfemoral amputees. Since off-the-shelf sensors and actuators are used in i-Inspire, various trials were conducted to evaluate the repeatability of the sensory data. Accordingly, the mean coefficients of correlation for knee angle, force, and inclination were computed at slow and medium walking speeds. The obtained values were, respectively, 0.982 and 0.946 for knee angle, 0.942 and 0.928 for knee force, and 0.825 and 0.758 for knee inclination. These results confirmed that the data are highly correlated with minimum covariance. Accordingly, the sensors provide reliable and repeatable data to the controller for mode detection and intent recognition. Furthermore, the knee angles at self-selected walking speeds were recorded, and it was observed that the i-Inspire Knee maintains a maximum flexion angle between 50° and 60°, which is in accordance with state-of-the-art microprocessor-based transfemoral prosthesis.
Assuntos
Atividades Cotidianas , Articulação do Joelho , Humanos , Articulação do Joelho/cirurgia , Extremidade Inferior , Amputação Cirúrgica , MicrocomputadoresRESUMO
Force myography (FMG) represents a promising alternative to surface electromyography (EMG) in the context of controlling bio-robotic hands. In this study, we built upon our prior research by introducing a novel wearable armband based on FMG technology, which integrates force-sensitive resistor (FSR) sensors housed in newly designed casings. We evaluated the sensors' characteristics, including their load-voltage relationship and signal stability during the execution of gestures over time. Two sensor arrangements were evaluated: arrangement A, featuring sensors spaced at 4.5 cm intervals, and arrangement B, with sensors distributed evenly along the forearm. The data collection involved six participants, including three individuals with trans-radial amputations, who performed nine upper limb gestures. The prediction performance was assessed using support vector machines (SVMs) and k-nearest neighbor (KNN) algorithms for both sensor arrangments. The results revealed that the developed sensor exhibited non-linear behavior, and its sensitivity varied with the applied force. Notably, arrangement B outperformed arrangement A in classifying the nine gestures, with an average accuracy of 95.4 ± 2.1% compared to arrangement A's 91.3 ± 2.3%. The utilization of the arrangement B armband led to a substantial increase in the average prediction accuracy, demonstrating an improvement of up to 4.5%.
Assuntos
Gestos , Dispositivos Eletrônicos Vestíveis , Humanos , Extremidade Superior , Miografia/métodos , Eletromiografia/métodos , Mãos , AlgoritmosRESUMO
Using force myography (FMG) to monitor volumetric changes in limb muscles is a promising and effective alternative for controlling bio-robotic prosthetic devices. In recent years, there has been a focus on developing new methods to improve the performance of FMG technology in the control of bio-robotic devices. This study aimed to design and evaluate a novel low-density FMG (LD-FMG) armband for controlling upper limb prostheses. The study investigated the number of sensors and sampling rate for the newly developed LD-FMG band. The performance of the band was evaluated by detecting nine gestures of the hand, wrist, and forearm at varying elbow and shoulder positions. Six subjects, including both fit and amputated individuals, participated in this study and completed two experimental protocols: static and dynamic. The static protocol measured volumetric changes in forearm muscles at the fixed elbow and shoulder positions. In contrast, the dynamic protocol included continuous motion of the elbow and shoulder joints. The results showed that the number of sensors significantly impacts gesture prediction accuracy, with the best accuracy achieved on the 7-sensor FMG band arrangement. Compared to the number of sensors, the sampling rate had a lower influence on prediction accuracy. Additionally, variations in limb position greatly affect the classification accuracy of gestures. The static protocol shows an accuracy above 90% when considering nine gestures. Among dynamic results, shoulder movement shows the least classification error compared to elbow and elbow-shoulder (ES) movements.
Assuntos
Gestos , Extremidade Superior , Humanos , Eletromiografia/métodos , Miografia/métodos , Mãos/fisiologia , MovimentoRESUMO
The worldwide CML incidence expects 100,000 patients every year thus representing a substantial health burden. A year 2000 is notable year, where Tyrosine kinase inhibitors (TKIs) had been introduced to the CML treatment plan. However, despite the dramatically reduce in mortality rate of CML patients due to TKIs, still over 25% of CML patients need to switch TKIs at least once during treatment timeline for many reasons. On the other hand, PTPRG behave as a tumor suppressor gene in different neoplasms and is strongly down-regulated in CML patients. We discussed briefly in series of articles the possible reasons of it is down regulation. Here, we discuss its role as potential therapeutic target in treatment plan.
Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Regulação para Baixo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Fourteen new thienylnicotinamidines and their analogs 5a-5k, 12, 13a, and 13b were prepared and their antiproliferative potential was evaluated against the growth of 60 cancer cell lines. The tested compounds had a strong antiproliferative efficacy against almost all cancer cell lines, with the average GI50 at ~2.20 µM. The effect of the thienylnicotinamidines on the growth of normal lung fibroblast cells (WI-38) indicated that these derivatives are safe to the normal cells. The selectivity index (SI) ranges from 5.5- to 42.0-fold. The conceivable mechanisms of action of the effective compounds 5d, 5f, 5g, 5i, 5j, and 5k with high SI were investigated. Although the thienylnicotinamidines are similar in structure, they could be divided into three groups as per their effects on gene expression: The first group (5d and 5f) elevated p53 and caspase 3 expression, the second group (5g and 5i) elevated p53 expression, and the last group (5j and 5k) elevated p53 and reduced topoII expression. Many thienylnicotinamides inhibited the vascular endothelial growth factor receptor-2 (VEGFR-2) in cell lysates at concentrations comparable to or better than pazopanib. The data of caspase 3 expression were confirmed by measuring the protein level by Western blot and the activity of the cleaved active enzyme. The ability to arrest the cell cycle and induce apoptosis was confirmed by flow cytometry. Taken together, two derivatives, 5d and 5f, with a distinctive VEGFR-2 inhibitory activity and a proapoptotic and cell cycle arrest profile merit further investigations.
Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Apoptose , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Niacinamida/química , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expression analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of ontological term analysis are presented along with some results of current interest for forthcoming experimental research in the field of the transcriptomic landscape of CML. In particular, we present two methods that differ in the order of the analysis steps. After a gene selection based on fold-change value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we applied two different methods on the set of differentially expressed genes. With the first method (Method 1), we implemented GSEA, followed by the identification of transcription factors. With the second method (Method 2), we first selected the transcription factors from the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to identify transcription factors more specifically involved in biological processes relevant to the CML condition. Both methods have been equipped in ontological knowledge mining and word cloud analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, further validating the approach and identifying a new molecular mechanism of tumor suppression governed by PTPRG in a CML context.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Genes Supressores de Tumor , Humanos , Mesilato de Imatinib/uso terapêutico , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Monoéster Fosfórico Hidrolases/genética , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genéticaRESUMO
Resistance of bacteria to multiple antibiotics is a significant health problem; hence, to continually respond to this challenge, different antibacterial agents must be constantly discovered. In this work, fluoroaryl-2,2'-bichalcophene derivatives were chemically synthesized and their biological activities were evaluated against Staphylococcus aureus (S. aureus). The impact of the investigated bichalcophene derivatives was studied on the ultrastructural level via scanning electron microscopy (SEM), molecular level via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method and on the biofilm inhibition via the electrochemical biosensors. Arylbichalcophenes' antibacterial activity against S. aureus was affected by the presence and location of fluorine atoms. The fluorobithiophene derivative MA-1156 displayed the best minimum inhibitory concentration (MIC) value of 16 µM among the tested fluoroarylbichalcophenes. Over a period of seven days, S. aureus did not develop any resistance against the tested fluoroarylbichalcophenes at higher concentrations. The impact of fluoroarylbichalcophenes was strong on S. aureus protein pattern showing high degrees of polymorphism. SEM micrographs of S. aureus cells treated with fluoroarylbichalcophenes displayed smaller cell-sizes, fewer numbers, arranged in a linear form and some of them were damaged when compared to the untreated cells. The bioelectrochemical measurements demonstrated the strong sensitivity of S. aureus cells to the tested fluoroarylbichalcophenes and an antibiofilm agent. Eventually, these fluoroarylbichalcophene compounds especially the MA-1156 could be recommended as effective antibacterial agents.
Assuntos
Antibacterianos/química , Biofilmes/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Compostos Orgânicos/química , Staphylococcus aureus/efeitos dos fármacos , Técnicas Biossensoriais , Sobrevivência Celular , Química Farmacêutica/métodos , Eletroquímica , Eletroforese em Gel de Poliacrilamida , Concentração Inibidora 50 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Modelos QuímicosRESUMO
The unparalleled epidemic of the novel coronavirus (COVID-19), during early December 2019 in Wuhan, China, has rapidly evolved into a global pandemic, became a matter of grave concern. The pandemic presented a unique challenge to government agencies worldwide. The paucity of resources and lack of knowledges to manage the pandemic, coupled with the fear of future consequences has established the need for adoption of emerging and future technologies to address the upcoming challenges. With introduction of measures to control the pandemic, trainees will see a dramatic decline in their in-person exposure to all aspects of their education, with no clear endpoint. This presents an extreme challenge for educators and, given the rapidly evolving situation, there have not yet been training authorities recommendations. We propose several innovative solutions to deliver medical education while maintaining the safety of residents and educators.
Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Educação Médica/organização & administração , Tecnologia Educacional , Pneumonia Viral/epidemiologia , COVID-19 , Controle de Doenças Transmissíveis , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2RESUMO
The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [(3)H]MK-801 and the [(3)H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.
Assuntos
Encéfalo/metabolismo , Maleato de Dizocilpina/química , Pentamidina/análogos & derivados , Piperidinas/química , Receptores de N-Metil-D-Aspartato/química , Animais , Sítios de Ligação , Maleato de Dizocilpina/metabolismo , Simulação de Acoplamento Molecular , Pentamidina/síntese química , Pentamidina/metabolismo , Piperazina , Piperazinas/química , Piperazinas/metabolismo , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Trítio/químicaRESUMO
Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation. Spectrometry, footprint and biosensor-surface plasmon resonance analyses of the DB1255/DNA interaction evidenced sequence selectivity and groove binding as dimer. Additional EMSA evidenced the precise DNA-binding sequence required for optimal DB1255/DNA binding and thus for an efficient ERG/DNA complex inhibition. We further highlighted the structure activity relationships from comparison with derivatives. In cellulo luciferase assay confirmed this modulation both with the constructed optimal sequences and the Osteopontin promoter known to be regulated by ERG and which ERG-binding site was protected from DNaseI digestion on binding of DB1255. These data showed for the first time the ERG/DNA complex modulation, both in vitro and in cells, by a heterocyclic diamidine that specifically targets a portion of the ERG DNA recognition site.
Assuntos
Amidinas/farmacologia , Antineoplásicos/farmacologia , Tiofenos/farmacologia , Transativadores/antagonistas & inibidores , Ativação Transcricional/efeitos dos fármacos , Amidinas/química , Amidinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Tiofenos/química , Tiofenos/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERGRESUMO
DB1255 is a symmetrical diamidinophenyl-dithiophene that exhibits cellular activity by binding to DNA and inhibiting binding of ERG, an ETS family transcription factor that is commonly overexpressed or translocated in leukemia and prostate cancer [Nhili, R., Peixoto, P., Depauw, S., Flajollet, S., Dezitter, X., Munde, M. M., Ismail, M. A., Kumar, A., Farahat, A. A., Stephens, C. E., Duterque-Coquillaud, M., Wilson, W. D., Boykin, D. W., and David-Cordonnier, M. H. (2013) Nucleic Acids Res. 41, 125-138]. Because transcription factor inhibition is complex but is an attractive area for anticancer and antiparasitic drug development, we have evaluated the DNA interactions of additional derivatives of DB1255 to gain an improved understanding of the biophysical chemistry of complex function and inhibition. DNase I footprinting, biosensor surface plasmon resonance, and circular dichroism experiments show that DB1255 has an unusual and strong monomer binding mode in minor groove sites that contain a single GC base pair flanked by AT base pairs, for example, 5'-ATGAT-3'. Closely related derivatives, such as compounds with the thiophene replaced with furan or selenophane, bind very weakly to GC-containing sequences and do not have biological activity. DB1255 is selective for the ATGAT site; however, a similar sequence, 5'-ATGAC-3', binds DB1255 more weakly and does not produce a footprint. Molecular docking studies show that the two thiophene sulfur atoms form strong, bifurcated hydrogen bond-type interactions with the G-N-H sequence that extends into the minor groove while the amidines form hydrogen bonds to the flanking AT base pairs. The central dithiophene unit of DB1255 thus forms an excellent, but unexpected, single-GC base pair recognition module in a monomer minor groove complex.
Assuntos
Amidinas/química , DNA/química , Tiofenos/química , Amidinas/síntese química , Amidinas/metabolismo , Sequência de Aminoácidos , Técnicas Biossensoriais , DNA/metabolismo , Pegada de DNA , Desoxirribonuclease I/metabolismo , Guanina/química , Guanina/metabolismo , Modelos Moleculares , Ressonância de Plasmônio de Superfície , Tiofenos/síntese química , Tiofenos/metabolismo , Temperatura de TransiçãoRESUMO
Light-emitting diode (LED) fluorescence microscopy offers potential benefits in the diagnosis of human African trypanosomiasis and in other aspects of diseases management, such as detection of drug-resistant strains. To advance such approaches, reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we describe a series of novel green fluorescent diamidines and their suitability as probes with which to stain trypanosomes.
Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Pentamidina , Trypanosoma brucei gambiense/metabolismo , Tripanossomíase Africana/diagnóstico , Humanos , Pentamidina/análogos & derivados , Pentamidina/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei gambiense/efeitos dos fármacosRESUMO
African sleeping sickness is a neglected tropical disease transmitted by tsetse flies. New and better drugs are still needed especially for its second stage, which is fatal if untreated. 28DAP010, a dipyridylbenzene analogue of DB829, is the second simple diamidine found to cure mice with central nervous system infections by a parenteral route of administration. 28DAP010 showed efficacy similar to that of DB829 in dose-response studies in mouse models of first- and second-stage African sleeping sickness. The in vitro time to kill, determined by microcalorimetry, and the parasite clearance time in mice were shorter for 28DAP010 than for DB829. No cross-resistance was observed between 28DAP010 and pentamidine on the tested Trypanosoma brucei gambiense isolates from melarsoprol-refractory patients. 28DAP010 is the second promising preclinical candidate among the diamidines for the treatment of second-stage African sleeping sickness.
Assuntos
Amidinas/farmacologia , Piridinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Amidinas/síntese química , Amidinas/farmacocinética , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Melarsoprol/farmacocinética , Melarsoprol/farmacologia , Camundongos , Pentamidina/farmacocinética , Pentamidina/farmacologia , Piridinas/síntese química , Piridinas/farmacocinética , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/farmacocinética , Trypanosoma brucei gambiense/crescimento & desenvolvimento , Trypanosoma brucei gambiense/patogenicidade , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologiaRESUMO
Photophysical behavior of two D - π - A+ cationic compounds with the same furyl bridge and nicotinamidine group as an electron acceptor moiety and two electron donating groups, namely methoxy (I) and N,N-dimethylamino (II) groups was examined using steady-state and time-resolved techniques in variety of solvents. Time-dependent density functional theory (TDDFT) calculations were performed in some representative solvents and compared with the experimental results. Steady state and time-resolved studies in different solvents reveal that fluorescence emission of (I) is ascribed to an emission from an excited state (ICT) with higher dipole moment than the ground state while the emission of (II) is a dual emission from a state with high charge transfer nature (ICT) in addition to the locally excited state (LE). The fluorescence emission spectra of (II) were found to depend on the excitation wavelength and an increase in the excitation wavelength led to the formation of a longer wavelength emission band with lower quantum yield. It has also been found that the fluorescence excitation spectra were dependent on the emission wavelength. The effect of solvent on the nature of dual emission was examined. Correlation of the photophysical properties of the excited states of (I) and (II) with the solvent polarity, ε, reveals the charge transfer nature of (I) and the long wavelength emission band of (II), while their correlation with the solvent polarity parameter (ETN) shows two different trends when the solvents are divided to aprotic and protic solvents. For precise investigation of the impact of each solvent parameter on each photophysical property, Catalán's and Laurence's four parametric linear solvation energy relationships were studied. We have found that the non-specific interactions of the solvent are primarily responsible for controlling the photophysical properties, as demonstrated by Catalán's and Laurence's treatments. DFT and TDDFT calculations were used to anticipate the dipole moments in the ground and excited states and geometry of both states.
RESUMO
BACKGROUND: One of the hypotheses that leads to an increased incidence of Alzheimer's disease (AD) is the accumulation of aluminum in the brain's frontal cortex. The present study aimed to evaluate the therapeutic role of a novel bithiophene derivative at two doses against AlCl3-induced AD in a rat model. METHODOLOGY: Adult male rats were divided into six groups, 18 rats each. Group 1: naïve animals, group 2: animals received a daily oral administration of bithiophene dissolved in DMSO (1 mg/kg) for 30 days every other day, groups 3-6: animals received a daily oral administration of AlCl3 (100 mg/kg/day) for 45 consecutive days. Groups 4 and 5 received an oral administration of low or high dose of the bithiophene (0.5 or 1 mg/kg, respectively). Group 6; Animals were treated with a daily oral dose of memantine (20 mg/kg) for 30 consecutive days. MAIN FINDINGS: Al disturbed the antioxidant milieu, elevated the lipid peroxidation, and depleted the antioxidants. It also disturbed the synaptic neurotransmission by elevating the activities of acetylcholine esterase and monoamine oxidase resulting in the depletion of dopamine and serotonin and accumulation of glutamate and norepinephrine. Al also deteriorated the expression of genes involved in apoptosis and the production of amyloid-ß plaques as well as phosphorylation of tau. The new bithiophene at the low dose reversed most of the previous deleterious effects of aluminum in the cerebral cortex and was in many instances superior to the reference drug; memantine. CONCLUSION: Taking together, the bithiophene modulated the AD etiology through antioxidant activity, prevention of neuronal and synaptic loss, and probably mitigating the formation of amyloid-ß plaques and phosphorylation of tau.
Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Alumínio/efeitos adversos , Cloreto de Alumínio/farmacologia , Memantina/efeitos adversos , Ratos Wistar , Peptídeos beta-Amiloides/metabolismo , Transmissão Sináptica , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse OxidativoRESUMO
In this study, synthesis and assessment of the corrosion inhibition of four new binary heterocyclic pyrimidinones on CS in 1.0 M hydrochloric acid solutions at various temperatures (30-50 °C) were investigated. The synthesized molecules were designed and synthesized through Suzuki coupling reaction, the products were identified as 5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (HM-1221), 2-thioxo-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)dihydropyrimidine-4,6(1H,5H)-dione (HM-1222), 1,3-diethyl-2-thioxo-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)dihydropyrimidine-4,6(1H,5H)-dione (HM-1223) and 1,3-dimethyl-5-((5-(3,4,5-trimethoxyphenyl)furan-2-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-trione (HM-1224). The experiments include weight loss measurements (WL), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). From the measurements, it can be shown that the inhibition efficiency (η) of these organic derivatives increases with increasing the doses of inhibitors. The highest η recorded from EIS technique were 89.3%, 90.0%, 92.9% and 89.7% at a concentration of 11 × 10-6 M and 298 K for HM-1221, HM-1222, HM-1223, and HM-1224, respectively. The adsorption of the considered derivatives fit to the Langmuir adsorption isotherm. Since the ΔGoads values were found to be between - 20.1 and - 26.1 kJ mol-1, the analyzed isotherm plots demonstrated that the adsorption process for these derivatives on CS surface is a mixed-type inhibitors. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM) and Fourier- transform infrared spectroscopy (FTIR) were utilized to study the surface morphology, whereby, quantum chemical analysis can support the mechanism of inhibition. DFT data and experimental findings were found in consistent agreement.
RESUMO
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.
Assuntos
Chlorella vulgaris , Daucus carota , Metais Pesados , Poluentes do Solo , Spirulina , Cádmio/toxicidade , Águas Residuárias , Ácido Edético/farmacologia , Chlorella vulgaris/metabolismo , Chumbo/farmacologia , Pós , Metais Pesados/análise , Poluentes do Solo/toxicidadeRESUMO
Despite the success of antibiotics in medicine, the treatment of bacterial infection is still challenging due to emerging resistance and suitable drug delivery system, therefore, innovative approaches focused on nanoparticles based antimicrobial drug delivery systems are highly desired. This research aimed to synthesize Cymbopogon citratus (C. citratus) aqueous extract-mediated copper oxide (CuO-Nps) conjugated with levofloxacin (LFX). The synthesized CuO NPs-LFX nano conjugate was confirmed by analysis using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and infrared and ultraviolet/visible spectroscopy. Antibacterial activities were assessed in vitro through the agar well diffusion method against six bacterial strains of clinical relevance. CuO NPs confirmed by UV-Vis analysis absorption peak observed at 380 nm. TGA analysis showed 8.98% weight loss between the 400-800 °C temperature range. The functional group's presence was confirmed by FTIR analysis. Spherical shape nanoparticles with an average particle size of 55 nm were recorded by FESEM. Results from agar well diffusion assay showed that CuO NPs-LFX prohibited the development of both gram-positive and gram-negative bacteria at all established concentrations, and the antibacterial propensity was more pronounced as compared to bare CuO NPs, Levofloxacin and C. citratus aqueous extract alone. The results showed that gram-negative bacteria are more susceptible to CuO NPs-LFX nano conjugate and at 10 µgmL-1 concentration, form a 10.1 mm zone of inhibition (ZOI), whereas gram-positive bacteria on the same concentration form 9.5 mm ZOI. LFX-loaded CuO NPs antibacterial activity was observed higher than plant extract, bare CuO NPs, and standard drug (Levofloxacin). This study provides a novel approach for the fabrication of biogenic CuO NPs with antibacterial drug levofloxacin and their usage as nano antibiotic carriers against pathogenic bacteria, especially antibiotic-resistant microbes.
RESUMO
DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (K(m), 11 µM; V(max), 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (K(m1), 0.5 µM; V(max1), 12 pmol/min/mg; K(m2), 27 µM; V(max2), 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S(50), 18 µM; V(max), 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.