RESUMO
Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.
RESUMO
Fast microfluidic mixers are a valuable tool for studying solution-phase chemical reaction kinetics and molecular processes with spectroscopy. However, microfluidic mixers that are compatible with infrared vibrational spectroscopy have seen only limited development due to the poor infrared transparency of the current microfabrication material. We describe the design, fabrication, and characterization of CaF2-based continuous flow turbulent mixers, which are capable of measuring kinetics in the millisecond time window with infrared spectroscopy, when integrated into an infrared microscope. Kinetics measurements demonstrate the ability to resolve relaxation processes with 1 millisecond time resolution, and straightforward improvements are described that should result in sub-100 µs time-resolution.
RESUMO
Remediation of legacy nuclear waste is one of the greatest challenges faced by the US Department of Energy, with projected cleanup efforts requiring over five decades and hundreds of billions of dollars. New materials are necessary to accelerate waste processing, achieving time and financial savings. Herein we report a peroxide treatment to a Ti metal-organic framework (MOF) and related MOF-templated adsorbents. The resulting materials displayed exceptional affinity for Am(III), achieving distribution coefficients in excess of 105 mL/g, and out-performing state-of-the-art benchmarks monosodium titanate (MST) and peroxo-treated modified MST (mMST) for removal of 85Sr(II) and 239, 240Pu(IV) from legacy nuclear waste simulant.