Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38767352

RESUMO

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Assuntos
Febre Lassa , Vírus Lassa , Vírus da Coriomeningite Linfocítica , Nanopartículas , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Glicoproteínas/imunologia , Glicoproteínas/genética , Febre Lassa/prevenção & controle , Febre Lassa/imunologia , Vírus Lassa/imunologia , Vírus Lassa/genética , Lipossomos , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nucleoproteínas/imunologia , Nucleoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Carga Viral , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
2.
Org Biomol Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258408

RESUMO

Biological molecules incorporating trifluoromethyl ketones (TFMKs) have emerged as reversible covalent inhibitors, aiding in the management and treatment of inflammatory diseases, cancer, and respiratory conditions. TFMKs, renowned for their versatile binding properties and adaptability, are pivotal in the rational design of novel drugs for diverse diseases. The photocatalytic insertion of alkenes, abundant feedstocks, into the α-carbon of trifluoromethylacetone represents a highly effective and atom-economical method for synthesizing valuable TFMKs. However, these processes typically necessitate high-energy photoirradiation (λ > 300 nm, Hg lamp) and stoichiometric oxidants to generate the acetonyl radical from acetone. In our study, we demonstrate the visible-light photocatalytic radical addition into olefins using bromotrifluoroacetone as the trifluoroacetonyl radical precursor under mild conditions. Aliphatic trifluoromethyl ketones or the corresponding bromo-substituted products can be obtained by selecting an appropriate photocatalyst and solvent. Comprehensive experimental investigations, including cyclic voltammetry, Stern-Volmer quenching studies, and kinetic isotope effects, corroborate the synthesis of trifluoroacetonyl radical species from bromotrifluoroacetone under photoredox conditions. Further, we demonstrate the efficient synthesis of an oseltamivir derivative bearing a trifluoromethylketone moiety, which shows promising biological activity. Hence, this methodology will streamline the direct introduction of trifluoromethyl ketone into biological target molecules during drug discovery.

3.
J Biol Chem ; 298(2): 101576, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35026225

RESUMO

Mammalian arenavirus (mammarenavirus) mRNAs are characterized by 5'-capped and 3'-nonpolyadenylated untranslated regions (UTRs). We previously reported that the nonpolyadenylated 3'-UTR of viral mRNA (vmRNA), which is derived from the noncoding intergenic region (IGR), regulates viral protein levels at the posttranscriptional level. This finding provided the basis for the development of novel live-attenuated vaccines (LAVs) against human pathogenic mammarenaviruses. Detailed information about the roles of specific vmRNA 3'-UTR sequences in controlling translation efficiency will help in understanding the mechanism underlying attenuation by IGR manipulations. Here, we characterize the roles of cis-acting mRNA regulatory sequences of a prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in modulating translational efficiency. Using in vitro transcribed RNA mimics encoding a reporter gene, we demonstrate that the 3'-UTR of nucleoprotein (NP) mRNA without a poly(A) tail promotes translation in a poly(A)-binding protein-independent manner. Comparison with the 3'-UTR of glycoprotein precursor mRNA, which is translated less efficiently, revealed that a 10-nucleotide sequence proximal to the NP open reading frame is essential for promoting translation. Modification of this 10-nucleotide sequence also impacted reporter gene expression in recombinant LCMV. Our findings will enable rational design of the 10-nucleotide sequence to further improve our mammarenavirus LAV candidates and to develop a novel LCMV vector capable of controlling foreign gene expression.


Assuntos
Vírus da Coriomeningite Linfocítica , Nucleoproteínas , RNA Mensageiro , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Humanos , Vírus da Coriomeningite Linfocítica/genética , Mamíferos/metabolismo , Nucleoproteínas/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vacinas Atenuadas/genética , Vacinas Atenuadas/metabolismo
5.
Uirusu ; 72(1): 67-78, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-37899232

RESUMO

Viruses achieve their efficient reproduction by utilizing their limited components (nucleic acids, lipids, and proteins) and host cell machineries. A detailed understanding of virus-virus and virus-host interactions will lead to the elucidation of mechanisms underlying viral pathogenesis and the development of novel medical countermeasures. We elucidated the details of several such interactions and their roles in the multiplication of negative-strand RNA viruses, measles virus, and Lassa virus. These discoveries were harnessed to develop a novel genetic approach for the generation of live-attenuated vaccine candidates with a well-defined molecular mechanism of attenuation. This article describes our findings.

6.
Uirusu ; 72(1): 7-18, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-37899233

RESUMO

South American Hemorrhagic Fever is caused by the Arenavirus, which belong to the Family Arenaviridae, genus mammarenavirus, infection at South America. South American Hemorrhagic Fever includes 1. Argentinian Hemorrhagic fever caused by Junin virus, 2. Brazilian hemorrhagic fever caused by Sabia virus, 3. Venezuelan Hemorrhagic fever caused by Guanarito virus, 4. Bolivian Hemorrhagic fever caused by Machupo virus, and 5. Unassigned hemorrhagic fever caused by Chapare virus. These viruses are classified in New World (NW) Arenavirus, which is different from Old World Arenavirus (ex. Lassa virus), based on phylogeny, serology, and geographic differences. In this review, the current knowledge of the biology and the development of the vaccines and antivirals of NW Arenaviruses which cause South American Hemorrhagic Fever will be described.

7.
PLoS Pathog ; 14(2): e1006892, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462184

RESUMO

Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.


Assuntos
Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/metabolismo , Nucleoproteínas/metabolismo , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas Repressoras/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Células A549 , Animais , Arenaviridae/fisiologia , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Proibitinas , Ligação Proteica , Proteínas Repressoras/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero
8.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593035

RESUMO

Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus matrix Z protein plays critical roles in different steps of the viral life cycle by interacting with viral and host cellular components. Here we report that alanine substitution of a highly conserved leucine residue, located at position 72 in LCMV Z protein, abrogated Z-L interaction. The L72A mutation did not affect Z budding activity but promoted its rapid degradation in the presence of an active viral ribonucleoprotein (vRNP). Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Vírus da Coriomeningite Linfocítica/crescimento & desenvolvimento , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus/genética , Alanina/genética , Substituição de Aminoácidos/genética , Cloreto de Amônio/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucina/genética , Leupeptinas/farmacologia , Vírus da Coriomeningite Linfocítica/genética , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , RNA Polimerase Dependente de RNA/genética , Células Vero , Proteínas Virais/genética
9.
J Virol ; 90(22): 10102-10112, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27581982

RESUMO

Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose serious public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. We have documented that a recombinant LCMV containing the glycoprotein (GPC) gene of LASV within the backbone of the immunosuppressive clone 13 (Cl-13) variant of the Armstrong strain of LCMV (rCl-13/LASV-GPC) exhibited Cl-13-like growth properties in cultured cells, but in contrast to Cl-13, rCl-13/LASV-GPC was unable to establish persistence in immunocompetent adult mice, which prevented its use for some in vivo experiments. Recently, V459K and K461G mutations within the GP2 cytoplasmic domain (CD) of rCl-13/LASV-GPC were shown to increase rCl-13/LASV-GPC infectivity in mice. Here, we generated rCl-13(GPC/VGKS) by introducing the corresponding revertant mutations K465V and G467K within GP2 of rCl-13 and we show that rCl-13(GPC/VGKS) was unable to persist in mice. K465V and G467K mutations did not affect GPC processing, virus RNA replication, or gene expression. In addition, rCl-13(GPC/VGKS) grew to high titers in cultured cell lines and in immunodeficient mice. Further analysis revealed that rCl-13(GPC/VGKS) infected fewer splenic plasmacytoid dendritic cells than rCl-13, yet the two viruses induced similar type I interferon responses in mice. Our findings have identified novel viral determinants of Cl-13 persistence and also revealed that virus GPC-host interactions yet to be elucidated critically contribute to Cl-13 persistence. IMPORTANCE: The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), provides investigators with a superb experimental model system to investigate virus-host interactions. The Armstrong strain (ARM) of LCMV causes an acute infection, whereas its derivative, clone 13 (Cl-13), causes a persistent infection. Mutations F260L and K1079Q within GP1 and L polymerase, respectively, have been shown to play critical roles in Cl-13's ability to persist in mice. However, there is an overall lack of knowledge about other viral determinants required for Cl-13's persistence. Here, we report that mutations K465V and G467K within the cytoplasmic domain of Cl-13 GP2 resulted in a virus, rCl-13(GPC/VGKS), that failed to persist in mice despite exhibiting Cl-13 wild-type-like fitness in cultured cells and immunocompromised mice. This finding has uncovered novel viral determinants of viral persistence, and a detailed characterization of rCl-13(GPC/VGKS) can provide novel insights into the mechanisms underlying persistent viral infection.


Assuntos
Glicoproteínas/genética , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoplasma , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Hospedeiro Imunocomprometido/fisiologia , Interferon Tipo I/metabolismo , Vírus Lassa/genética , Vírus Lassa/patogenicidade , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Camundongos , Mutação/genética , Células Vero , Replicação Viral/genética
10.
J Virol ; 90(6): 3187-97, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739049

RESUMO

UNLABELLED: Hemorrhagic fever arenaviruses (HFAs) pose important public health problems in regions where they are endemic. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. We have recently shown that the noncoding intergenic region (IGR) present in each arenavirus genome segment, the S and L segments (S-IGR and L-IGR, respectively), plays important roles in the control of virus protein expression and that this knowledge could be harnessed for the development of live-attenuated vaccine strains to combat HFAs. In this study, we further investigated the sequence plasticity of the arenavirus IGR. We demonstrate that recombinants of the prototypic arenavirus lymphocytic choriomeningitis virus (rLCMVs), whose S-IGRs were replaced by the S-IGR of Lassa virus (LASV) or an entirely nonviral S-IGR-like sequence (Ssyn), are viable, indicating that the function of S-IGR tolerates a high degree of sequence plasticity. In addition, rLCMVs whose L-IGRs were replaced by Ssyn or S-IGRs of the very distantly related reptarenavirus Golden Gate virus (GGV) were viable and severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. Our findings indicate that replacement of L-IGR by a nonviral Ssyn could serve as a universal molecular determinant of arenavirus attenuation. IMPORTANCE: Hemorrhagic fever arenaviruses (HFAs) cause high rates of morbidity and mortality and pose important public health problems in regions where they are endemic. Implementation of live-attenuated vaccines (LAVs) will represent a major step to combat HFAs. Here we document that the arenavirus noncoding intergenic region (IGR) has a high degree of plasticity compatible with virus viability. This observation led us to generate recombinant LCMVs containing nonviral synthetic IGRs. These rLCMVs were severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. These nonviral synthetic IGRs can be used as universal molecular determinants of arenavirus attenuation for the rapid development of safe and effective, as well as stable, LAVs to combat HFA.


Assuntos
DNA Intergênico , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Mutagênese Insercional , Recombinação Genética , Vacinas Virais/imunologia , Animais , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/prevenção & controle , Modelos Animais de Doenças , Vírus Lassa/genética , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
J Virol ; 89(23): 12166-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26401045

RESUMO

UNLABELLED: Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE: Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a major step in combatting HFA. Here we have used the prototypic arenavirus LCMV to document a general molecular strategy for arenavirus attenuation that can facilitate the rapid development of safe and effective, as well as stable, LAV to combat HFA.


Assuntos
Arenaviridae/imunologia , Febre Lassa/prevenção & controle , Vacinas Atenuadas/biossíntese , Vacinas Virais/biossíntese , Animais , Arenaviridae/genética , Northern Blotting , Chlorocebus aethiops , Primers do DNA/genética , Humanos , Vírus da Coriomeningite Linfocítica/genética , Plasmídeos/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/imunologia
12.
J Virol ; 89(10): 5734-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25762740

RESUMO

In this study, we document that efficient interaction between arenavirus nucleoprotein (NP) and RNA-dependent RNA polymerase (L protein), the two trans-acting viral factors required for both virus RNA replication and gene transcription, requires the presence of virus-specific RNA sequences located within the untranslated 5' and 3' termini of the viral genome.


Assuntos
Arenavirus/metabolismo , Nucleocapsídeo/metabolismo , Nucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Arenavirus/genética , Genoma Viral , Células HEK293 , Humanos , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/fisiologia , Nucleocapsídeo/genética , Nucleoproteínas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Replicação Viral
13.
J Virol ; 89(21): 10924-33, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26292327

RESUMO

UNLABELLED: Several arenaviruses cause hemorrhagic fever disease in humans and represent important public health problems in the regions where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important neglected human pathogen. There are no licensed arenavirus vaccines and current antiarenavirus therapy is limited to the use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel antiarenaviral therapeutics. Here, we report the generation of a novel recombinant LCM virus and its use to develop a cell-based high-throughput screen to rapidly identify inhibitors of LCMV multiplication. We used this novel assay to screen a library of 30,400 small molecules and identified compound F3406 (chemical name: N-[3,5-bis(fluoranyl)phenyl]-2-[5,7-bis(oxidanylidene)-6-propyl-2-pyrrolidin-1-yl-[1,3]thiazolo[4,5-d]pyrimidin-4-yl]ethanamide), which exhibited strong anti-LCMV activity in the absence of cell toxicity. Mechanism-of-action studies revealed that F3406 inhibited LCMV cell entry by specifically interfering with the pH-dependent fusion in the endosome compartment that is mediated by LCMV glycoprotein GP2 and required to release the virus ribonucleoprotein into the cell cytoplasm to initiate transcription and replication of the virus genome. We identified residue M437 within the transmembrane domain of GP2 as critical for virus susceptibility to F3406. IMPORTANCE: Hemorrhagic fever arenaviruses (HFA) are important human pathogens that cause high morbidity and mortality in areas where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Concerns posed by arenavirus infections are aggravated by the lack of U.S. Food and Drug Administration-licensed arenavirus vaccines and current antiarenaviral therapy being limited to the off-label use of ribavirin that is only partially effective. Here we describe a novel recombinant LCMV and its use to develop a cell-based assay suitable for HTS to rapidly identify inhibitors arenavirus multiplication. The concepts and experimental strategies we describe in this work provide the bases for the rapid identification and characterization of novel anti-HFA therapeutics.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/fisiologia , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Tiazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/fisiologia , Animais , Western Blotting , Chlorocebus aethiops , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Plasmídeos/genética , Pirimidinonas/análise , Tiazóis/análise , Células Vero , Replicação Viral/efeitos dos fármacos
14.
J Virol ; 88(1): 643-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173224

RESUMO

Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a great public health concern in the regions in which they are endemic. Moreover, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The limited existing armamentarium to combat human-pathogenic arenaviruses underscores the importance of developing novel antiarenaviral drugs, a task that would be facilitated by the identification and characterization of virus-host cell factor interactions that contribute to the arenavirus life cycle. A genome-wide small interfering RNA (siRNA) screen identified sodium hydrogen exchanger 3 (NHE3) as required for efficient multiplication of LCMV in HeLa cells, but the mechanisms by which NHE activity contributed to the life cycle of LCMV remain unknown. Here we show that treatment with the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) resulted in a robust inhibition of LCMV multiplication in both rodent (BHK-21) and human (A549) cells. EIPA-mediated inhibition was due not to interference with virus RNA replication, gene expression, or budding but rather to a blockade of virus cell entry. EIPA also inhibited cell entry mediated by the glycoproteins of the HF arenaviruses LASV and Junin virus (JUNV). Pharmacological and genetic studies revealed that cell entry of LCMV in A549 cells depended on actin remodeling and Pak1, suggesting a macropinocytosis-like cell entry pathway. Finally, zoniporide, an NHE inhibitor being explored as a therapeutic agent to treat myocardial infarction, inhibited LCMV propagation in culture cells. Our findings indicate that targeting NHEs could be a novel strategy to combat human-pathogenic arenaviruses.


Assuntos
Arenavirus/fisiologia , Fusão de Membrana/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Western Blotting , Linhagem Celular , Humanos
15.
J Virol ; 87(17): 9633-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804634

RESUMO

Most viruses possess strategies to circumvent host immune responses. The measles virus (MV) nonstructural C protein suppresses the interferon response, thereby allowing efficient viral growth, but its detailed mechanism has been unknown. We identified Shc Src homology 2 domain-binding protein 1 (SHCBP1) as one of the host proteins interacting with the C protein. Knockdown of SHCBP1 using a short-hairpin RNA greatly reduced MV growth. SHCBP1 was found to be required for viral RNA synthesis in the minigenome assay and to bind to the MV phosphoprotein, a subunit of the viral RNA polymerase. A stretch of 12 amino acid residues in the C protein were sufficient for SHCBP1 binding, and the peptide containing these 12 residues could suppress MV RNA synthesis, like the full-length C protein. The central region of SHCBP1 was found to bind to the C protein, as well as the phosphoprotein, but the two viral proteins did not compete for SHCBP1 binding. Our results indicate that the C protein modulates MV RNA polymerase activity by binding to the host protein SHCBP1. SHCBP1 may be exploited as a target of antiviral compounds.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Vírus do Sarampo/fisiologia , Vírus do Sarampo/patogenicidade , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Proteínas não Estruturais Virais/fisiologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus do Sarampo/genética , Modelos Biológicos , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Proteínas Adaptadoras da Sinalização Shc/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/genética
16.
J Virol ; 87(8): 4683-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408617

RESUMO

Many viruses use the host trafficking system at a variety of their replication steps. Measles virus (MV) possesses a nonsegmented negative-strand RNA genome that encodes three components of the ribonucleoprotein (RNP) complex (N, P, and L), two surface glycoproteins, a matrix protein, and two nonstructural proteins. A subset of immune cells and polarized epithelial cells are in vivo targets of MV, and MV is selectively released from the apical membrane of polarized epithelial cells. However, the molecular mechanisms for the apical release of MV remain largely unknown. In the present study, the localization and trafficking mechanisms of the RNP complex of MV were analyzed in detail using recombinant MVs expressing fluorescent protein-tagged L proteins. Live cell imaging analyses demonstrated that the MV RNP complex was transported in a manner dependent on the microtubule network and together with Rab11A-containing recycling endosomes. The RNP complex was accumulated at the apical membrane and the apical recycling compartment. The accumulation and shedding of infectious virions were severely impaired by expression of a dominant negative form of Rab11A. On the other hand, recycling endosome-mediated RNP transport was totally dispensable for virus production in nonpolarized cells. These data provide the first demonstration of the regulated intracellular trafficking events of the MV RNP complex that define the directional viral release from polarized epithelial cells.


Assuntos
Endossomos/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Vírus do Sarampo/fisiologia , Ribonucleoproteínas/metabolismo , Liberação de Vírus , Animais , Fusão Gênica Artificial , Transporte Biológico , Linhagem Celular , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , RNA Viral/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(37): 15384-9, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21896767

RESUMO

Measles virus (MV), a human pathogen, uses the signaling lymphocyte activation molecule (SLAM) or CD46 as an entry receptor. Although several transgenic mice expressing these receptors have been generated as small animal models for measles, these mice usually have to be made defective in IFN-α/ß signaling to facilitate MV replication. Similarly, when functional receptors are expressed by transfection, mouse cells do not allow MV growth as efficiently as primate cells. In this study, we demonstrate that MV efficiently grows in SLAM-expressing mouse cells in which the Sendai virus (SeV) C protein is transiently expressed. We developed a SLAM-expressing mouse cell line whose genome also encodes the SeV C protein downstream of the sequence flanked with loxP sequences. When this cell line was infected with the recombinant MV expressing the Cre recombinase, the SeV C protein was readily expressed. Importantly, the Cre recombinase-encoding MV grew in this cell line much more efficiently than it did in the parental cell. The minigenome assay demonstrated that the SeV C protein does not modulate MV RNA synthesis. Analyses using the mutant proteins with the defined functional defects revealed that the IFN-antagonist function, but not the budding-accelerating function, of the SeV C protein was critical for supporting efficient MV growth in mouse cells. Our results indicate that insufficient IFN antagonism can be an important determinant of the host range of viruses, and the system described here may be useful to overcome the species barrier of other human viruses.


Assuntos
Vírus do Sarampo/crescimento & desenvolvimento , Vírus Sendai/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Humanos , Integrases/metabolismo , Interferons/antagonistas & inibidores , Interferons/metabolismo , Camundongos , Recombinação Genética/genética , Transcrição Gênica
18.
Antiviral Res ; 209: 105481, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481388

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells using angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP-1) as the primary receptor and entry co-factor, respectively. Cell entry is the first and major step in initiation of the viral life cycle, representing an ideal target for antiviral interventions. In this study, we used a recombinant replication-deficient vesicular stomatitis virus-based pseudovirus bearing the spike protein of SARS-CoV-2 (SARS2-S) to screen a US Food and Drug Administration-approved drug library and identify inhibitors of SARS-CoV-2 cell entry. The screen identified 24 compounds as primary hits, and the largest therapeutic target group formed by these primary hits was composed of seven dopamine receptor D2 (DRD2) antagonists. Cell-based and biochemical assays revealed that the DRD2 antagonists inhibited both fusion activity and the binding of SARS2-S to NRP-1, but not its binding to ACE2. On the basis of structural similarity to the seven identified DRD2 antagonists, which included six phenothiazines, we examined the anti-SARS-CoV-2 activity of an additional 15 phenothiazines and found that all the tested phenothiazines shared an ability to inhibit SARS2-S-mediated cell entry. One of the phenothiazines, alimemazine, which had the lowest 50% effective concentration of the tested phenothiazines, exhibited a clear inhibitory effect on SARS2-S-NRP-1 binding and SARS-CoV-2 multiplication in cultured cells but not in a mouse infection model. Our findings provide a basis for the development of novel anti-SARS-CoV-2 therapeutics that interfere with SARS2-S binding to NRP-1.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/química , Neuropilina-1/metabolismo , Fenotiazinas/farmacologia , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Humanos
20.
Virology ; 576: 83-95, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183499

RESUMO

The mammarenavirus Lassa virus (LASV) causes a life-threatening acute febrile disease, Lassa fever (LF). To date, no US Food and Drug Administration (FDA)-licensed medical countermeasures against LASV are available. This underscores the need for the development of novel anti-LASV drugs. Here, we screen an FDA-approved drug library to identify novel anti-LASV drug candidates using an infectious-free cell line expressing a functional LASV ribonucleoprotein (vRNP), where levels of vRNP-directed reporter gene expression serve as a surrogate for vRNP activity. Our screen identified the pan-ErbB tyrosine kinase inhibitor afatinib as a potent inhibitor of LASV vRNP activity. Afatinib inhibited multiplication of lymphocytic choriomeningitis virus (LCMV) a mammarenavirus closely related to LASV. Cell-based assays revealed that afatinib inhibited multiple steps of the LASV and LCMV life cycles. Afatinib also inhibited multiplication of Junín virus vaccine strain Candid#1, indicating that afatinib can have antiviral activity against a broad range of human pathogenic mammarenaviruses.


Assuntos
Arenaviridae , Febre Lassa , Vacinas , Chlorocebus aethiops , Animais , Humanos , Afatinib , Células Vero , Vírus Lassa/genética , Vírus da Coriomeningite Linfocítica , Antivirais/farmacologia , Ribonucleoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estágios do Ciclo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA