Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Genes Cells ; 28(4): 319-325, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719634

RESUMO

We investigated the alterations in autophagy-related molecules in neurons differentiated from induced pluripotent stem cells obtained from patients with Alzheimer's disease (AD). Consistent with our previous microarray data, ATG4A protein was upregulated in the neurons derived from a familial AD patient with an APP-E693Δ mutation who showed accumulation of intracellular amyloid ß peptide (Aß). This upregulation was reversed by inhibiting Aß production, suggesting that the intracellular Aß may be responsible for the upregulation of ATG4A. The LC3B-II/LC3B-I ratio, an index of autophagosome formation, was lower in the neurons derived from the AD patient with APP-E693Δ as well as the neurons derived from other familial and sporadic AD patients. These findings indicate that dysregulation of autophagy-related molecules may accelerate the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Neurônios/metabolismo
2.
Biol Pharm Bull ; 47(2): 509-517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403661

RESUMO

(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.


Assuntos
Catequina , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Chá/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Biol Pharm Bull ; 46(3): 446-454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858574

RESUMO

The onset of Alzheimer's disease (AD) is characterized by accumulation of amyloid ß peptide (Aß) in the brain. Neprilysin (NEP) is one of the major Aß-degrading enzymes. Given findings that NEP expression in the brain declines from the early stage of AD before apparent neuronal losses are observed, enhancement of NEP activity and expression may be a preventive and therapeutic strategy relevant to disease onset. We screened for compounds that could enhance the activity and expression of NEP using a polyphenol library previously constructed by our research group and investigated the structure-activity relationships of the identified polyphenols. We found that amentoflavone, apigenin, kaempferol, and chrysin enhanced the activity and expression of NEP, suggesting that chemical structures involving a double bond between positions 2 and 3 in the C ring of flavones are important for NEP enhancement, while catechol or pyrogallol structures, except for the galloyl group of catechins, abolished these effects. Moreover, natural compounds, such as quercetin, were not effective per se, but were changed to effective compounds by adding a lipophilic moiety. Using our study findings, we propose improvements for dietary habits with experimental evidence, and provide a basis for the development of novel small molecules as disease-modifying drugs for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Neprilisina , Apigenina , Encéfalo
4.
J Biol Chem ; 295(11): 3678-3691, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996371

RESUMO

Alzheimer's disease (AD) is the most common type of dementia, and its pathogenesis is associated with accumulation of ß-amyloid (Aß) peptides. Aß is produced from amyloid precursor protein (APP) that is sequentially cleaved by ß- and γ-secretases. Therefore, APP processing has been a target in therapeutic strategies for managing AD; however, no effective treatment of AD patients is currently available. Here, to identify endogenous factors that modulate Aß production, we performed a gene microarray-based transcriptome analysis of neuronal cells derived from human induced pluripotent stem cells, because Aß production in these cells changes during neuronal differentiation. We found that expression of the glycophosphatidylinositol-specific phospholipase D1 (GPLD1) gene is associated with these changes in Aß production. GPLD1 overexpression in HEK293 cells increased the secretion of galectin 3-binding protein (GAL3BP), which suppressed Aß production in an AD model, neuroglioma H4 cells. Mechanistically, GAL3BP suppressed Aß production by directly interacting with APP and thereby inhibiting APP processing by ß-secretase. Furthermore, we show that cells take up extracellularly added GAL3BP via endocytosis and that GAL3BP is localized in close proximity to APP in endosomes where amyloidogenic APP processing takes place. Taken together, our results indicate that GAL3BP may be a suitable target of AD-modifying drugs in future therapeutic strategies for managing AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Comunicação Autócrina , Diferenciação Celular , Linhagem Celular , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Comunicação Parácrina , Fosfolipase D/metabolismo , Ligação Proteica
5.
FASEB J ; 34(1): 180-191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914621

RESUMO

Mutations of PRRT2 (proline-rich transmembrane protein 2) cause several neurological disorders, represented by paroxysmal kinesigenic dyskinesia (PKD), which is characterized by attacks of involuntary movements triggered by sudden voluntary movements. PRRT2 is reported to suppress neuronal excitation, but it is unclear how the function of PRRT2 is modulated during neuronal excitation. We found that PRRT2 is processed to a 12 kDa carboxy-terminal fragment (12K-CTF) by calpain, a calcium-activated cysteine protease, in a neuronal activity-dependent manner, predominantly via NMDA receptors or voltage-gated calcium channels. Furthermore, we clarified that 12K-CTF is generated by sequential cleavages at Q220 and S244. The amino-terminal fragment (NTF) of PRRT2, which corresponds to PKD-related truncated mutants, is not detected, probably due to rapid cleavage at multiple positions. Given that 12K-CTF lacks most of the proline-rich domain, this cleavage might be involved in the activity-dependent enhancement of neuronal excitation perhaps through transient retraction of PRRT2's function. Therefore, PRRT2 might serve as a buffer for neuronal excitation, and lack of this function in PKD patients might cause neuronal hyperexcitability in their motor circuits.


Assuntos
Calpaína/metabolismo , Córtex Cerebral/citologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Discinesias , Ácido Glutâmico/farmacologia , Masculino , Potenciais da Membrana , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Plasmídeos
6.
Biol Pharm Bull ; 40(3): 327-333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250274

RESUMO

Amyloid-ß peptide (Aß) accumulation is a triggering event leading to the Alzheimer's disease (AD) pathological cascade. Almost all familial AD-linked gene mutations increase Aß production and accelerate the onset of AD. The Swedish mutation of amyloid precursor protein (APP) affects ß-secretase activity and increases Aß production up to ca. 6-fold in cultured cells; the onset age is around 50. Down syndrome (DS) patients with chromosome 21 trisomy present AD-like pathologies at earlier ages (40s) compared with sporadic AD patients, because APP gene expression is 1.5-fold higher than that in healthy people, thus causing a 1.5-fold increase in Aß production. However, when comparing the causal relationship of Aß accumulation with the onset age between the above two populations, early DS pathogenesis does not appear to be accounted for by the increased Aß production alone. In this study, we found that neprilysin, a major Aß-degrading enzyme, was downregulated in DS patient-derived fibroblasts, compared with healthy people-derived fibroblasts. Treatment with harmine, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), which is located in the DS critical region of chromosome 21, and gene knockdown of DYRK1A, upregulated neprilysin in fibroblasts. These results suggest that a decrease in the Aß catabolic rate may be, at least in part, one of the causes for accelerated AD-like pathogenesis in DS patients if a similar event occurs in the brains, and that neprilysin activity may be regulated directly or indirectly by DYRK1A-mediated phosphorylation. DYRK1A inhibition may be a promising disease-modifying therapy for AD via neprilysin upregulation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Síndrome de Down/metabolismo , Fibroblastos/metabolismo , Neprilisina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Doença de Alzheimer/enzimologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Linhagem Celular , Cromossomos Humanos Par 21 , Síndrome de Down/enzimologia , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Fibroblastos/enzimologia , Harmina/farmacologia , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Tirosina/metabolismo , Quinases Dyrk
7.
Am J Pathol ; 185(2): 305-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25433221

RESUMO

Alzheimer disease (AD) is biochemically characterized by increased levels of amyloid ß (Aß) peptide, which aggregates into extracellular Aß plaques in AD brains. Before plaque formation, Aß accumulates intracellularly in both AD brains and in the brains of AD model mice, which may contribute to disease progression. Autophagy, which is impaired in AD, clears cellular protein aggregates and participates in Aß metabolism. In addition to a degradative role of autophagy in Aß metabolism we recently showed that Aß secretion is inhibited in mice lacking autophagy-related gene 7 (Atg7) in excitatory neurons in the mouse forebrain. This inhibition of Aß secretion leads to intracellular accumulation of Aß. Here, we used fluorescence and immunoelectron microscopy to elucidate the subcellular localization of the intracellular Aß accumulation which accumulates in Aß precursor protein mice lacking Atg7. Autophagy deficiency causes accumulation of p62(+) aggregates, but these aggregates do not contain Aß. However, knockdown of Atg7 induced Aß accumulation in the Golgi and a concomitant reduction of Aß in the multivesicular bodies. This indicates that Atg7 influences the transport of Aß possibly derived from Golgi to multivesicular bodies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Proteína 7 Relacionada à Autofagia , Complexo de Golgi/genética , Complexo de Golgi/patologia , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Fragmentos de Peptídeos/genética
8.
Biol Pharm Bull ; 39(10): 1646-1652, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725441

RESUMO

Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-ß peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.


Assuntos
Doença de Alzheimer/metabolismo , Calcineurina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Inibidores de Calcineurina/farmacologia , Ionóforos de Cálcio/farmacologia , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Proteínas de Ligação a DNA , Síndrome de Down/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ionomicina/farmacologia , Luciferases/genética , Luciferases/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Neprilisina/genética , Neprilisina/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Acetato de Tetradecanoilforbol/farmacologia , Proteínas tau/genética
9.
Proteomics ; 15(19): 3349-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26194619

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid ß-peptide (Aß), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aß-degrading enzyme and a lack thereof increases Aß levels in the brain twofold. To identify altered protein expression levels induced by increased Aß levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC-MS/MS method to analyze brain homogenate, using an (18) O-labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aß levels and those induced by neprilysin deficiency independently of Aß, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 (http://proteomecentral.proteomexchange.org/dataset/PXD000968 and (http://proteomecentral.proteomexchange.org/dataset/PXD001786). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aß levels.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Neprilisina/genética , Proteínas/genética , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/fisiopatologia , Cromatografia Líquida , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Proteínas/análise , Proteômica , Espectrometria de Massas em Tandem
10.
J Immunol ; 191(7): 3778-88, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986533

RESUMO

Calpain enzymes proteolytically modulate cellular function and have been implicated in inflammatory diseases. In this study, we found that calpain levels did not differ between intestinal tissues from inflammatory bowel disease (IBD) patients and healthy controls, but IBD tissues showed increased levels of the endogenous calpain inhibitor, calpastatin (CAST). To investigate the role of CAST in the immune system during IBD, mice were x-ray irradiated, reconstituted with either CAST-knockout (KO) or wild-type (WT) bone marrow, and subjected to dextran sulfate sodium-induced colitis. CAST-KO recipients with induced colitis exhibited more severe weight loss, bloody diarrhea, and anemia compared with WT controls. Histological evaluation of colons from KO recipients with colitis revealed increased inflammatory pathology. Macrophages purified from the colons of KO recipients had higher IL-6, TNF-α, and IFN-γ mRNA levels compared with WT controls. Mechanistic investigations using small interfering RNA and KO bone marrow to generate CAST-deficient macrophages showed that CAST deficiency during activation with bacterial pathogen associated molecular patterns, including heat-killed Enterococcus faecalis or CpG DNA, led to increased IκB cleavage, NF-κB nuclear localization, and IL-6 and TNF-α secretion. Thus, CAST plays a central role in regulating macrophage activation and limiting pathology during inflammatory disorders like IBD.


Assuntos
Proteínas de Ligação ao Cálcio/farmacologia , Colite/imunologia , Colite/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Animais , Colite/genética , Colite/patologia , Inibidores de Cisteína Proteinase/farmacologia , Citocinas/biossíntese , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Transdução de Sinais
11.
Sci Signal ; 17(848): eadk1822, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106321

RESUMO

Deposition of amyloid-ß (Aß) in the brain can impair neuronal function and contribute to cognitive decline in Alzheimer's disease (AD). Here, we found that dopamine and the dopamine precursor levodopa (also called l-DOPA) induced Aß degradation in the brain. Chemogenetic approaches in mice revealed that the activation of dopamine release from ventral tegmental area (VTA) neurons increased the abundance and activity of the Aß-degrading enzyme neprilysin and reduced the amount of Aß deposits in the prefrontal cortex in a neprilysin-dependent manner. Aged mice had less dopamine and neprilysin in the anterior cortex, a decrease that was accentuated in AD model mice. Treating AD model mice with levodopa reduced Aß deposition and improved cognitive function. These observations demonstrate that dopamine promotes brain region-specific, neprilysin-dependent degradation of Aß, suggesting that dopamine-associated strategies have the potential to treat this aspect of AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Dopamina , Neprilisina , Área Tegmentar Ventral , Neprilisina/metabolismo , Neprilisina/genética , Animais , Dopamina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Levodopa/farmacologia , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Humanos , Proteólise/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Masculino
12.
Artigo em Inglês | MEDLINE | ID: mdl-39196683

RESUMO

Mutations in proline-rich transmembrane protein 2 (PRRT2) cause paroxysmal kinesigenic dyskinesia (PKD). Recently, we reported that a Prrt2 mutation exacerbated L-dopa-induced motor deficits in mice, suggesting that the basal ganglia might contribute to PKD pathology. Here, we demonstrated that the Prrt2 mutation enhanced depolarization stimuli-induced extracellular dopamine levels in the mouse striatum, which were attenuated by repeated stimulation. L-dopa administration maintained high dopamine levels in Prrt2-KI mice even during repetitive stimuli but did not affect dopamine levels in wild-type mice. Thus, the enhanced and prolonged responsiveness of dopamine release in nigrostriatal dopaminergic neurons to sequential excitation may be partially implicated in Prrt2-related dyskinesia.

13.
Life Sci Alliance ; 7(12)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39348937

RESUMO

The amyloid ß peptide (Aß), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aß3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aß3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aß produced physiologically is Aß1-40/42, an explanation for how and why this physiological Aß is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aß3pE-42 deposition: Aß3pE-42 was metabolically more stable than other Aßx-42 variants; deficiency of neprilysin, the major Aß-degrading enzyme, induced a relatively selective deposition of Aß3pE-42 in both APP transgenic and App knock-in mouse brains; Aß3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aß1-42 may be processed to Aß3pE-42. Our findings suggest that anti-Aß therapies are more effective if given before Aß3pE-42 deposition.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Epitopos , Camundongos Transgênicos , Neprilisina , Peptídeos beta-Amiloides/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Camundongos , Humanos , Encéfalo/metabolismo , Neprilisina/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Fragmentos de Peptídeos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Precursor de Proteína beta-Amiloide/metabolismo , Anticorpos Monoclonais Humanizados
14.
J Biol Chem ; 287(48): 40817-25, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23033480

RESUMO

BACKGROUND: Separate monitoring of the cleavage products of different amyloid ß precursor protein (APP) variants may provide useful information. RESULTS: We found that soluble APP770 (sAPP770) is released from inflamed endothelial cells and activated platelets as judged by ELISA. CONCLUSION: sAPP770 is an indicator for endothelial and platelet dysfunctions. SIGNIFICANCE: How sAPP770 is released in vivo has been shown. Most Alzheimer disease (AD) patients show deposition of amyloid ß (Aß) peptide in blood vessels as well as the brain parenchyma. We previously found that vascular endothelial cells express amyloid ß precursor protein (APP) 770, a different APP isoform from neuronal APP695, and produce Aß. Since the soluble APP cleavage product, sAPP, is considered to be a possible marker for AD diagnosis, sAPP has been widely measured as a mixture of these variants. We hypothesized that measurement of the endothelial APP770 cleavage product in patients separately from that of neuronal APP695 would enable discrimination between endothelial and neurological dysfunctions. Using our newly developed ELISA system for sAPP770, we observed that inflammatory cytokines significantly enhanced sAPP770 secretion by endothelial cells. Furthermore, we unexpectedly found that sAPP770 was rapidly released from activated platelets. We also found that cerebrospinal fluid mainly contained sAPP695, while serum mostly contained sAPP770. Finally, to test our hypothesis that sAPP770 could be an indicator for endothelial dysfunction, we applied our APP770 ELISA to patients with acute coronary syndrome (ACS), in which endothelial injury and platelet activation lead to fibrous plaque disruption and thrombus formation. Development of a biomarker is essential to facilitate ACS diagnosis in clinical practice. The results revealed that ACS patients had significantly higher plasma sAPP770 levels. Furthermore, in myocardial infarction model rats, an increase in plasma sAPP preceded the release of cardiac enzymes, currently used markers for acute myocardial infarction. These findings raise the possibility that sAPP770 can be a useful biomarker for ACS.


Assuntos
Síndrome Coronariana Aguda/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Plaquetas/metabolismo , Células Endoteliais/imunologia , Fragmentos de Peptídeos/metabolismo , Ativação Plaquetária , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/metabolismo , Plaquetas/citologia , Células Cultivadas , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
15.
FASEB J ; 26(3): 1204-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22173972

RESUMO

The mechanism by which amyloid-ß peptide (Aß) accumulation causes neurodegeneration in Alzheimer's disease (AD) remains unresolved. Given that Aß perturbs calcium homeostasis in neurons, we investigated the possible involvement of calpain, a calcium-activated neutral protease. We first demonstrated close postsynaptic association of calpain activation with Aß plaque formation in brains from both patients with AD and transgenic (Tg) mice overexpressing amyloid precursor protein (APP). Using a viral vector-based tracer, we then showed that axonal termini were dynamically misdirected to calpain activation-positive Aß plaques. Consistently, cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of controls. Genetic deficiency of calpastatin (CS), a calpain-specific inhibitor protein, augmented Aß amyloidosis, tau phosphorylation, microgliosis, and somatodendritic dystrophy, and increased mortality in APP-Tg mice. In contrast, brain-specific CS overexpression had the opposite effect. These findings implicate that calpain activation plays a pivotal role in the Aß-triggered pathological cascade, highlighting a target for pharmacological intervention in the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/genética , Calpaína/genética , Caspases/metabolismo , Ativação Enzimática , Feminino , Imunofluorescência , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fosforilação , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Análise de Sobrevida , Proteínas tau/metabolismo
16.
J Biochem ; 174(6): 561-570, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37793168

RESUMO

Mutations of proline-rich transmembrane protein 2 (PRRT2) lead to dyskinetic disorders such as paroxysmal kinesigenic dyskinesia (PKD), which is characterized by attacks of involuntary movements precipitated by suddenly initiated motion, and some convulsive disorders. Although previous studies have shown that PKD might be caused by cerebellar dysfunction, PRRT2 has not been sufficiently analyzed in some motor-related regions, including the basal ganglia, where dopaminergic neurons are most abundant in the brain. Here, we generated several types of Prrt2 knock-in (KI) mice harboring mutations, such as c.672dupG, that mimics the human pathological mutation c.649dupC and investigated the contribution of Prrt2 to dopaminergic regulation. Regardless of differences in the frameshift sites, all truncating mutations abolished Prrt2 expression within the striatum and cerebral cortex, consistent with previous reports of similar Prrt2 mutant rodents, confirming the loss-of-function nature of these mutations. Importantly, administration of l-dopa, a precursor of dopamine, exacerbated rotarod performance, especially in Prrt2-KI mice. These findings suggest that dopaminergic dysfunction in the brain by the PRRT2 mutation might be implicated in a part of motor symptoms of PKD and related disorders.


Assuntos
Dopamina , Distonia , Animais , Humanos , Camundongos , Distonia/genética , Proteínas de Membrana/genética , Mutação
17.
J Neurosci ; 31(12): 4622-35, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430162

RESUMO

GABA is the major inhibitory neurotransmitter in the CNS and changes in GABAergic neurotransmission affect the overall activity of neuronal networks. The uptake of GABA into synaptic vesicles is mediated by the vesicular GABA transporter (VGAT), and changes in the expression of the transporter directly regulate neurotransmitter release. In this work we investigated the changes in VGAT protein levels during ischemia and in excitotoxic conditions, which may affect the demise process. We found that VGAT is cleaved by calpains following excitotoxic stimulation of hippocampal neurons with glutamate, giving rise to a stable truncated cleavage product (tVGAT). VGAT cleavage was also observed after transient middle cerebral artery occlusion in mice, a cerebral ischemia model, and following intrahippocampal injection of kainate, but no effect was observed in transgenic mice overexpressing calpastatin, a calpain inhibitor. Incubation of isolated cerebrocortical synaptic vesicles with recombinant calpain also induced the cleavage of VGAT and formation of stable tVGAT. Immunoblot experiments using antibodies targeting different regions of VGAT and N-terminal sequencing analysis showed that calpain cleaves the transporter in the N-terminal region, at amino acids 52 and 60. Immunocytochemistry of GABAergic striatal neurons expressing GFP fusion proteins with the full-length VGAT or tVGAT showed that cleavage of the transporter induces a loss of synaptic delivery, leading to a homogeneous distribution of the protein along neurites. Our results show that excitotoxicity downregulates full-length VGAT, with a concomitant generation of tVGAT, which is likely to affect GABAergic neurotransmission and may influence cell death during ischemia.


Assuntos
Neurotoxinas/farmacologia , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Western Blotting , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Calpaína/metabolismo , DNA/genética , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Ácido Caínico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Monoéster Fosfórico Hidrolases/metabolismo , Plasmídeos/genética , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transfecção , Ácido gama-Aminobutírico/fisiologia
18.
J Neurosci ; 31(12): 4720-30, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430171

RESUMO

Core pathologies of Alzheimer's disease (AD) are aggregated amyloid-ß peptides (Aß) and tau, and the latter is also characteristic of diverse neurodegenerative tauopathies. These amyloid lesions provoke microglial activation, and recent neuroimaging technologies have enabled visualization of this response in living brains using radioligands for the peripheral benzodiazepine receptor also known as the 18 kDa translocator protein (TSPO). Here, we elucidated contributions of Aß and tau deposits to in vivo TSPO signals in pursuit of mechanistic and diagnostic significance of TSPO imaging in AD and other tauopathies. A new antibody to human TSPO revealed induction of TSPO-positive microgliosis by tau fibrils in tauopathy brains. Emergence of TSPO signals before occurrence of brain atrophy and thioflavin-S-positive tau amyloidosis was also demonstrated in living mice transgenic for mutant tau by positron emission tomography (PET) with two classes of TSPO radioligands, [(11)C]AC-5216 and [(18)F]fluoroethoxy-DAA1106. Meanwhile, only modest TSPO elevation was observed in aged mice modeling Aß plaque deposition, despite the notably enhanced in vivo binding of amyloid radiotracer, [(11)C]Pittsburgh Compound-B, to plaques. In these animals, [(11)C]AC-5216 yielded better TSPO contrasts than [(18)F]fluoroethoxy-DAA1106, supporting the possibility of capturing early neurotoxicity with high-performance TSPO probes. Furthermore, an additional line of mice modeling intraneuronal Aß accumulation displayed elevated TSPO signals following noticeable neuronal loss, unlike TSPO upregulation heralding massive neuronal death in tauopathy model mice. Our data corroborate the utility of TSPO-PET imaging as a biomarker for tau-triggered toxicity, and as a complement to amyloid scans for diagnostic assessment of tauopathies with and without Aß pathologies.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Neuroglia/diagnóstico por imagem , Neuroglia/patologia , Proteínas tau/metabolismo , Acetamidas/síntese química , Compostos de Anilina , Animais , Autorradiografia , Encéfalo/patologia , Humanos , Imuno-Histoquímica , Marcação por Isótopo/métodos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Neurite (Inflamação)/patologia , Doença de Pick/patologia , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Purinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptores de GABA/metabolismo , Paralisia Supranuclear Progressiva/patologia , Tiazóis
19.
FASEB J ; 25(10): 3720-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21746863

RESUMO

γ-Secretase catalyzes the cleavage of the intramembrane region of the Alzheimer amyloid precursor protein (APP), generating p3, amyloid-ß peptide (Aß), and the APP intracellular domain (AICD). Although a γ-secretase inhibitor has been shown to cause an accumulation of the APP C-terminal fragments (CTFs) α and ß and to decrease levels of p3 or Aß and AICD, we found that treatment with a lysosomotropic weak base, such as chloroquine or ammonium chloride, caused simultaneous accumulation of both CTFs and AICD, suggesting that lysosomal proteases are also involved in processing of APP. This observation was reinforced by the results that cysteine protease inhibitor E-64d and cathepsin B specific inhibitor CA-074Me caused the accumulation of both CTFs and AICD with no change in known secretase activities. γ-Secretase preferentially cleaved phosphorylated CTFs to produce Aß, but cathepsin B degraded CTFs regardless of phosphorylation. Our results suggest that cathepsin B plays novel roles in the metabolism of APP and that an inhibition of APP phosphorylation is an attractive therapeutic target for Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Glioma/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Catepsina B/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Presenilinas/metabolismo , Estrutura Terciária de Proteína
20.
Nat Med ; 11(4): 434-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15778722

RESUMO

Expression of somatostatin in the brain declines during aging in various mammals including apes and humans. A prominent decrease in this neuropeptide also represents a pathological characteristic of Alzheimer disease. Using in vitro and in vivo paradigms, we show that somatostatin regulates the metabolism of amyloid beta peptide (Abeta), the primary pathogenic agent of Alzheimer disease, in the brain through modulating proteolytic degradation catalyzed by neprilysin. Among various effector candidates, only somatostatin upregulated neprilysin activity in primary cortical neurons. A genetic deficiency of somatostatin altered hippocampal neprilysin activity and localization, and increased the quantity of a hydrophobic 42-mer form of Abeta, Abeta(42), in a manner similar to presenilin gene mutations that cause familial Alzheimer disease. These results indicate that the aging-induced downregulation of somatostatin expression may be a trigger for Abeta accumulation leading to late-onset sporadic Alzheimer disease, and suggest that somatostatin receptors may be pharmacological-target candidates for prevention and treatment of Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Somatostatina/farmacologia , Envelhecimento , Animais , Células Cultivadas , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Neprilisina/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA