Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 203(11): 2899-2908, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676673

RESUMO

Folliculin interacting protein 1 (Fnip1) is a cytoplasmic protein originally discovered through its interaction with the master metabolic sensor 5' AMP-activated protein kinase (AMPK) and Folliculin, a protein mutated in individuals with Birt-Hogg-Dubé Syndrome. In response to low energy, AMPK stimulates catabolic pathways such as autophagy to enhance energy production while inhibiting anabolic pathways regulated by the mechanistic target of rapamycin complex 1 (mTORC1). We previously found that constitutive disruption of Fnip1 in mice resulted in a lack of peripheral B cells because of a block in B cell development at the pre-B cell stage. Both AMPK and mTORC1 were activated in Fnip1-deficient B cell progenitors. In this study, we found inappropriate mTOR localization at the lysosome under nutrient-depleted conditions. Ex vivo lysine or arginine depletion resulted in increased apoptosis. Genetic inhibition of AMPK, inhibition of mTORC1, or restoration of cell viability with a Bcl-xL transgene failed to rescue B cell development in Fnip1-deficient mice. Fnip1-deficient B cell progenitors exhibited increased nuclear localization of transcription factor binding to IgHM enhancer 3 (TFE3) in developing B cells, which correlated with an increased expression of TFE3-target genes, increased lysosome numbers and function, and increased autophagic flux. These results indicate that Fnip1 modulates autophagy and energy response pathways in part through the regulation of AMPK, mTORC1, and TFE3 in B cell progenitors.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos B/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Immunol ; 197(6): 2250-60, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521345

RESUMO

Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that coordinates nutrient and growth factor availability with cellular growth, division, and differentiation. Studies examining the roles of mTOR signaling in immune function revealed critical roles for mTOR in regulating T cell differentiation and function. However, few studies have investigated the roles of mTOR in early B cell development. In this study, we found that mTOR is highly activated during the pro- and pre-B stages of mouse B cell development. Conditional disruption of the mTOR coactivating protein Raptor in developing mouse B cells resulted in a developmental block at the pre-B cell stage, with a corresponding lack of peripheral B cells and loss of Ag-specific Ab production. Pre-B cell survival and proliferation were significantly reduced in Raptor-deficient mice. Forced expression of a transgenic BCR or a BclxL transgene on Raptor-deficient B cells failed to rescue B cell development, suggesting that pre-BCR signaling and B cell survival are impaired in a BclxL-independent manner. Raptor-deficient pre-B cells exhibited significant decreases in oxidative phosphorylation and glycolysis, indicating that loss of mTOR signaling in B cells significantly impairs cellular metabolic capacity. Treatment of mice with rapamycin, an allosteric inhibitor of mTOR, recapitulated the early B cell developmental block. Collectively, our data reveal a previously uncharacterized role for mTOR signaling in early B cell development, survival, and metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Glicólise/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Fosforilação/efeitos dos fármacos , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/imunologia , Células Precursoras de Linfócitos B/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/deficiência , Fatores de Transcrição , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
PLoS Genet ; 7(9): e1002235, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909281

RESUMO

The conserved DAF-16/FOXO transcription factors and SIR-2.1/SIRT1 deacetylases are critical for diverse biological processes, particularly longevity and stress response; and complex regulation of DAF-16/FOXO by SIR-2.1/SIRT1 is central to appropriate biological outcomes. Caenorhabditis elegans Host Cell Factor 1 (HCF-1) is a longevity determinant previously shown to act as a co-repressor of DAF-16. We report here that HCF-1 represents an integral player in the regulatory loop linking SIR-2.1/SIRT1 and DAF-16/FOXO in both worms and mammals. Genetic analyses showed that hcf-1 acts downstream of sir-2.1 to influence lifespan and oxidative stress response in C. elegans. Gene expression profiling revealed a striking 80% overlap between the DAF-16 target genes responsive to hcf-1 mutation and sir-2.1 overexpression. Subsequent GO-term analyses of HCF-1 and SIR-2.1-coregulated DAF-16 targets suggested that HCF-1 and SIR-2.1 together regulate specific aspects of DAF-16-mediated transcription particularly important for aging and stress responses. Analogous to its role in regulating DAF-16/SIR-2.1 target genes in C. elegans, the mammalian HCF-1 also repressed the expression of several FOXO/SIRT1 target genes. Protein-protein association studies demonstrated that SIR-2.1/SIRT1 and HCF-1 form protein complexes in worms and mammalian cells, highlighting the conservation of their regulatory relationship. Our findings uncover a conserved interaction between the key longevity determinants SIR-2.1/SIRT1 and HCF-1, and they provide new insights into the complex regulation of FOXO proteins.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , Longevidade/genética , Sirtuína 1/metabolismo , Estresse Fisiológico/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Evolução Molecular , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Células HEK293 , Fator C1 de Célula Hospedeira/genética , Humanos , RNA Interferente Pequeno/genética , Transdução de Sinais , Sirtuína 1/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
PLoS Biol ; 6(9): e233, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18828672

RESUMO

The transcription factor DAF-16/forkhead box O (FOXO) is a critical longevity determinant in diverse organisms, however the molecular basis of how its transcriptional activity is regulated remains largely unknown. We report that the Caenorhabditis elegans homolog of host cell factor 1 (HCF-1) represents a new longevity modulator and functions as a negative regulator of DAF-16. In C. elegans, hcf-1 inactivation caused a daf-16-dependent lifespan extension of up to 40% and heightened resistance to specific stress stimuli. HCF-1 showed ubiquitous nuclear localization and physically associated with DAF-16. Furthermore, loss of hcf-1 resulted in elevated DAF-16 recruitment to the promoters of its target genes and altered expression of a subset of DAF-16-regulated genes. We propose that HCF-1 modulates C. elegans longevity and stress response by forming a complex with DAF-16 and limiting a fraction of DAF-16 from accessing its target gene promoters, and thereby regulates DAF-16-mediated transcription of selective target genes. As HCF-1 is highly conserved, our findings have important implications for aging and FOXO regulation in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fator C1 de Célula Hospedeira/metabolismo , Longevidade/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Epistasia Genética , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Herbicidas/farmacologia , Fator C1 de Célula Hospedeira/genética , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estresse Oxidativo , Paraquat/farmacologia , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Fatores de Transcrição/genética , Transcrição Gênica
5.
PLoS One ; 13(6): e0197973, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897930

RESUMO

Birt-Hogg-Dube' Syndrome (BHDS) is a rare genetic disorder in humans characterized by skin hamartomas, lung cysts, pneumothorax, and increased risk of renal tumors. BHDS is caused by mutations in the BHD gene, which encodes for Folliculin, a cytoplasmic adapter protein that binds to Folliculin interacting proteins-1 and -2 (Fnip1, Fnip2) as well as the master energy sensor AMP kinase (AMPK). Whereas kidney-specific deletion of the Bhd gene in mice is known to result in polycystic kidney disease (PKD) and renal cell carcinoma, the roles of Fnip1 in renal cell development and function are unclear. In this study, we utilized mice with constitutive deletion of the Fnip1 gene to show that the loss of Fnip1 is sufficient to result in renal cyst formation, which was characterized by decreased AMPK activation, increased mTOR activation, and metabolic hyperactivation. Using RNAseq, we found that Fnip1 disruption resulted in many cellular and molecular changes previously implicated in the development of PKD in humans, including alterations in the expression of ion and amino acid transporters, increased cell adhesion, and increased inflammation. Loss of Fnip1 synergized with Tsc1 loss to hyperactivate mTOR, increase Erk activation, and greatly accelerate the development of PKD. Our results collectively define roles for Fnip1 in regulating kidney development and function, and provide a model for how loss of Fnip1 contributes to PKD and perhaps renal cell carcinoma.


Assuntos
Proteínas de Transporte/genética , Cistos/genética , Deleção de Genes , Rim/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transcrição Gênica/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Animais , Proteínas de Transporte/metabolismo , Cistos/patologia , Ativação Enzimática/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Genótipo , Rim/crescimento & desenvolvimento , Rim/patologia , Camundongos , Tamanho do Órgão/genética , Fosforilação Oxidativa , Proteína 1 do Complexo Esclerose Tuberosa/deficiência
6.
Endocrinology ; 148(3): 1246-54, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17110422

RESUMO

Dlx3, a homeodomain transcription factor, is essential for placental development in the mouse. The Dlx3(-/-) mouse embryo dies at embryonic d 9.5-10 putatively due to placental failure. To develop a more comprehensive understanding of the gene profile regulated by Dlx3, microarray analysis was used to determine differences in gene expression within the placenta of Dlx3(+/+) and Dlx3(-/-) mice. Array analysis revealed differential expression of 401 genes, 33 genes in which signal to log ratio values of null/wild-type were lower than -0.5 or higher than 0.5. To corroborate these findings, quantitative real-time PCR was used to confirm differential expression for 11 genes, nine of which displayed reduced expression and two with enhanced expression in the Dlx3(-/-) mouse. Loss of Dlx3 resulted in a marked reduction (>60%) in mRNA expression of placental growth factor (Pgf), a member of the vascular endothelial growth factor family. Consistent with these results, Pgf secretion from placental explants tended to be reduced in the Dlx3(-/-) mice, compared with wild type. To investigate mechanisms of Dlx3 regulation of Pgf gene transcription, we cloned 5.2 kb of the Pgf 5' flanking sequence for use in reporter gene assays. Expression of the Pgf promoter luciferase reporter containing at least three Dlx3 binding sites was increased markedly by overexpression of Dlx3 supporting the conclusion that Dlx3 may have a direct effect on Pgf promoter activity. These studies provide a novel view of the transcriptome regulated by Dlx3 in mouse placenta. Dlx3 is specifically required for full expression and secretion of Pgf in vivo. Moreover, in vitro studies support the conclusion that Dlx3 is sufficient to directly modulate expression of the Pgf gene promoter in placental cells.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Placenta/metabolismo , Prenhez , Fatores de Transcrição/fisiologia , Animais , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Embrião de Mamíferos , Feminino , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Placentário , Placentação , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/fisiologia , Prenhez/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
7.
Cytokine Growth Factor Rev ; 35: 47-62, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28583723

RESUMO

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Estrona/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Fosforilação
8.
PLoS One ; 8(11): e78841, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250814

RESUMO

The transcriptional co-regulator host cell factor-1 (HCF-1) plays critical roles in promoting cell cycle progression in diverse cell types, and in maintaining self-renewal of embryonic stem cells, but its role in pancreatic ß-cell function has not been investigated. Immunhistochemistry of mouse pancreas revealed nuclear expression of HCF-1 in pancreatic islets. Reducing HCF-1 expression in the INS-1 pancreatic ß-cell line resulted in reduced cell proliferation, reduced glucose-stimulated insulin secretion, and reduced expression of the critical ß-cell transcription factor Pdx1. HCF-1 is a known co-activator of the E2F1 transcription factor, and loss of E2F1 results in pancreatic ß-cell dysfunction and reduced expression of Pdx1. Therefore we wondered whether HCF-1 might be required for E2F1 regulation of Pdx1. Chromatin immunoprecipitation experiments revealed that HCF-1 and E2F1 co-localize to the Pdx1 promoter. These results indicate that HCF-1 represents a novel transcriptional regulator required for maintaining pancreatic ß-cell function.


Assuntos
Fator C1 de Célula Hospedeira/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Cromatina/genética , Cromatina/metabolismo , Fator de Transcrição E2F1/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Fator C1 de Célula Hospedeira/metabolismo , Secreção de Insulina , Camundongos , Regiões Promotoras Genéticas , Ratos , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA