Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 16(6): 1206-15, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975160

RESUMO

In this paper, we examine whether or not information theory can be one of the theoretic frameworks for visualization. We formulate concepts and measurements for qualifying visual information. We illustrate these concepts with examples that manifest the intrinsic and implicit use of information theory in many existing visualization techniques. We outline the broad correlation between visualization and the major applications of information theory, while pointing out the difference in emphasis and some technical gaps. Our study provides compelling evidence that information theory can explain a significant number of phenomena or events in visualization, while no example has been found which is fundamentally in conflict with information theory. We also notice that the emphasis of some traditional applications of information theory, such as data compression or data communication, may not always suit visualization, as the former typically focuses on the efficient throughput of a communication channel, whilst the latter focuses on the effectiveness in aiding the perceptual and cognitive process for data understanding and knowledge discovery. These findings suggest that further theoretic developments are necessary for adopting and adapting information theory for visualization.

2.
IEEE Trans Vis Comput Graph ; 16(6): 963-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975133

RESUMO

Pixel-based visualization is a popular method of conveying large amounts of numerical data graphically. Application scenarios include business and finance, bioinformatics and remote sensing. In this work, we examined how the usability of such visual representations varied across different tasks and block resolutions. The main stimuli consisted of temporal pixel-based visualization with a white-red color map, simulating monthly temperature variation over a six-year period. In the first study, we included 5 separate tasks to exert different perceptual loads. We found that performance varied considerably as a function of task, ranging from 75% correct in low-load tasks to below 40% in high-load tasks. There was a small but consistent effect of resolution, with the uniform patch improving performance by around 6% relative to higher block resolution. In the second user study, we focused on a high-load task for evaluating month-to-month changes across different regions of the temperature range. We tested both CIE L*u*v* and RGB color spaces. We found that the nature of the change-evaluation errors related directly to the distance between the compared regions in the mapped color space. We were able to reduce such errors by using multiple color bands for the same data range. In a final study, we examined more fully the influence of block resolution on performance, and found block resolution had a limited impact on the effectiveness of pixel-based visualization.

3.
IEEE Trans Vis Comput Graph ; 15(6): 1375-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834211

RESUMO

Due to its nonlinear nature, the climate system shows quite high natural variability on different time scales, including multiyear oscillations such as the El Niño Southern Oscillation phenomenon. Beside a shift of the mean states and of extreme values of climate variables, climate change may also change the frequency or the spatial patterns of these natural climate variations. Wavelet analysis is a well established tool to investigate variability in the frequency domain. However, due to the size and complexity of the analysis results, only few time series are commonly analyzed concurrently. In this paper we will explore different techniques to visually assist the user in the analysis of variability and variability changes to allow for a holistic analysis of a global climate model data set consisting of several variables and extending over 250 years. Our new framework and data from the IPCC AR4 simulations with the coupled climate model ECHAM5/MPI-OM are used to explore the temporal evolution of El Niño due to climate change.

4.
IEEE Trans Vis Comput Graph ; 14(6): 1459-66, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988997

RESUMO

The visualization and exploration of multivariate data is still a challenging task. Methods either try to visualize all variables simultaneously at each position using glyph-based approaches or use linked views for the interaction between attribute space and physical domain such as brushing of scatterplots. Most visualizations of the attribute space are either difficult to understand or suffer from visual clutter. We propose a transformation of the high-dimensional data in attribute space to 2D that results in a point cloud, called attribute cloud, such that points with similar multivariate attributes are located close to each other. The transformation is based on ideas from multivariate density estimation and manifold learning. The resulting attribute cloud is an easy to understand visualization of multivariate data in two dimensions. We explain several techniques to incorporate additional information into the attribute cloud, that help the user get a better understanding of multivariate data. Using different examples from fluid dynamics and climate simulation, we show how brushing can be used to explore the attribute cloud and find interesting structures in physical space.

5.
IEEE Trans Vis Comput Graph ; 19(1): 94-107, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22508900

RESUMO

Currently, user centered transfer function design begins with the user interacting with a one or two-dimensional histogram of the volumetric attribute space. The attribute space is visualized as a function of the number of voxels, allowing the user to explore the data in terms of the attribute size/magnitude. However, such visualizations provide the user with no information on the relationship between various attribute spaces (e.g., density, temperature, pressure, x, y, z) within the multivariate data. In this work, we propose a modification to the attribute space visualization in which the user is no longer presented with the magnitude of the attribute; instead, the user is presented with an information metric detailing the relationship between attributes of the multivariate volumetric data. In this way, the user can guide their exploration based on the relationship between the attribute magnitude and user selected attribute information as opposed to being constrained by only visualizing the magnitude of the attribute. We refer to this modification to the traditional histogram widget as an abstract attribute space representation. Our system utilizes common one and two-dimensional histogram widgets where the bins of the abstract attribute space now correspond to an attribute relationship in terms of the mean, standard deviation, entropy, or skewness. In this manner, we exploit the relationships and correlations present in the underlying data with respect to the dimension(s) under examination. These relationships are often times key to insight and allow us to guide attribute discovery as opposed to automatic extraction schemes which try to calculate and extract distinct attributes a priori. In this way, our system aids in the knowledge discovery of the interaction of properties within volumetric data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA