Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 280(19): 4782-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23879623

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme of tryptophan catabolism, has been strongly associated with the progression of malignancy and poor survival in melanoma patients. As a result, IDO1 is a leading target for interventions aimed at restoring melanoma immune surveillance. Here, in a scenario involving the tryptophan catabolism, we report that melatonin biosynthesis is driven by 1-methyl-tryptophan (1-MT), a competitive inhibitor of IDO1, in human fibroblasts, melanocytes and melanoma cells. In addition to melatonin biosynthesis, 1-MT induced the expression of tryptophan hydroxylase, arylalkylamine-N-acetyltransferase and hydroxyindole O-methyltransferase mRNA in fibroblasts and melanocytes. We observed a great variability in the levels of IDO1 mRNA expression and kynurenine release between skin cells and melanoma cell lines in response to interferon-γ, a classical IDO1 inducer. In this setting, melatonin was shown to downregulate kynurenine production. Furthermore, in a condition of low basal activity of IDO1, it was observed that 1-MT, as well melatonin, inhibited the proliferation of human melanoma cells. Taken together, our results suggest that 1-MT may serve as more than just a tool to disrupt tumor immune escape (via the inhibition of IDO1) because it was shown to act directly on the proliferation of human melanoma cells and induce melatonin biosynthesis in the tumor milieu. Moreover, 1-MT-mediated inhibition of IDO occurs in normal skin and melanoma cells, which addresses the possibility that all cells in the skin microenvironment can be targeted by 1-MT. Our findings provide innovative approaches into understanding tumor therapy related to the control of tryptophan metabolism by 1-MT.


Assuntos
Cinurenina/metabolismo , Melatonina/metabolismo , Pele/metabolismo , Triptofano/análogos & derivados , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Pele/citologia , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA