Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Am J Hum Genet ; 111(6): 1140-1164, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776926

RESUMO

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Assuntos
Inversão Cromossômica , Doenças Raras , Humanos , Doenças Raras/genética , Masculino , Feminino , Inversão Cromossômica/genética , Linhagem , Genoma Humano , Sequenciamento Completo do Genoma , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Proteínas de Homeodomínio/genética , Pessoa de Meia-Idade
2.
Am J Hum Genet ; 111(1): 200-210, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118446

RESUMO

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Assuntos
Proteínas de Ligação ao GTP , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Drosophila/genética
3.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325380

RESUMO

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Assuntos
Hiperparatireoidismo , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Feminino , Animais , Humanos , Deficiência Intelectual/patologia , Peixe-Zebra/genética , Mutação de Sentido Incorreto/genética , Fatores de Transcrição/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
4.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352860

RESUMO

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genética
5.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196654

RESUMO

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Animais , Fácies , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Drosophila , Deficiência Intelectual/patologia , Histona Desmetilases com o Domínio Jumonji/genética
7.
Am J Hum Genet ; 109(10): 1909-1922, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044892

RESUMO

The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Anomalia de Pelger-Huët , Núcleo Celular/genética , Criança , Cromatina , Humanos , Deficiência Intelectual/genética , Perda de Heterozigosidade , Anomalia de Pelger-Huët/genética
8.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34022130

RESUMO

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Assuntos
Mutação com Perda de Função , Perda de Heterozigosidade , Proteínas de Neoplasias/genética , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Pré-Escolar , Drosophila , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Proteoma/análise , Adulto Jovem
9.
Am J Hum Genet ; 108(3): 502-516, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596411

RESUMO

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos X/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética , Adolescente , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Adulto Jovem
10.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513338

RESUMO

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Haploinsuficiência , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Transcrição Gênica
11.
Genet Med ; 26(2): 101023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947183

RESUMO

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Assuntos
Transtornos do Neurodesenvolvimento , Reinfecção , Humanos , Leucócitos Mononucleares , Síndrome , Fenótipo , Arritmias Cardíacas/genética , Transtornos do Neurodesenvolvimento/genética , Moléculas de Adesão Celular/genética , Proteínas da Matriz Extracelular/genética
12.
Genet Med ; 25(4): 100018, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681873

RESUMO

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Assuntos
Deficiência Intelectual , Humanos , Sequenciamento do Exoma , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Alelos , Genótipo
13.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
14.
Br J Dermatol ; 188(1): 75-83, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689522

RESUMO

BACKGROUND: Desmosomes are complex cell junction structures that connect intermediate filaments providing strong cell-to-cell adhesion in tissues exposed to mechanical stress. OBJECTIVES: To identify causal variants in individuals with woolly hair and skin fragility of unknown genetic cause. METHODS: This research was conducted using whole-genome sequencing, whole-exome sequencing, clinical phenotyping, haplotype analysis, single-cell RNA sequencing data analysis, immunofluorescence microscopy and transmission electron microscopy. RESULTS: We identified homozygous predicted loss-of-function tuftelin-1 (TUFT1) variants in nine individuals, from three families, with woolly hair and skin fragility. One donor splice-site variant, c.60+1G>A, was present in two families, while a frameshift variant, p.Gln189Asnfs*49, was found in the third family. Haplotype analysis showed the c.60+1G>A substitution to be a founder variant in the Irish population that likely arose approximately 20 generations ago. Human and mouse single-cell RNA sequencing data showed TUFT1 expression to be enriched in the hair dermal sheath and keratinocytes. TUFT1 expression was highly correlated with genes encoding desmosomal components implicated in diseases with phenotypes that overlap with the cohort presented here. Immunofluorescence showed tuftelin-1 to be mainly localized to the peripheral cell membranes of keratinocytes in normal skin. Skin samples from individuals with TUFT1 variants showed markedly reduced immunoreactivity for tuftelin-1, with a loss of the keratinocyte cell membrane labelling. Light microscopy revealed keratinocyte adhesion, mild hyperkeratosis and areas of superficial peeling. Transmission electron microscopy showed panepidermal acantholysis with widening of intercellular spaces throughout the epidermis and desmosomal detachment through the inner plaques. CONCLUSIONS: Biallelic loss-of-function TUFT1 variants cause a new autosomal recessive skin/hair disorder characterized by woolly hair texture and early-onset skin fragility. Tuftelin-1 has a role in desmosomal integrity and function.


Assuntos
Doenças do Cabelo , Anormalidades da Pele , Humanos , Camundongos , Animais , Doenças do Cabelo/genética , Pele , Queratinócitos/metabolismo , Cabelo
15.
J Chem Inf Model ; 63(15): 4545-4551, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37463276

RESUMO

Predictive screening of metal-organic framework (MOF) materials for their gas uptake properties has been previously limited by using data from a range of simulated sources, meaning the final predictions are dependent on the performance of these original models. In this work, experimental gas uptake data has been used to create a Gradient Boosted Tree model for the prediction of H2, CH4, and CO2 uptake over a range of temperatures and pressures in MOF materials. The descriptors used in this database were obtained from the literature, with no computational modeling needed. This model was repeated 10 times, showing an average R2 of 0.86 and a mean absolute error (MAE) of ±2.88 wt % across the runs. This model will provide gas uptake predictions for a range of gases, temperatures, and pressures as a one-stop solution, with the data provided being based on previous experimental observations in the literature, rather than simulations, which may differ from their real-world results. The objective of this work is to create a machine learning model for the inference of gas uptake in MOFs. The basis of model development is experimental as opposed to simulated data to realize its applications by practitioners. The real-world nature of this research materializes in a focus on the application of algorithms as opposed to the detailed assessment of the algorithms.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Transporte Biológico , Algoritmos , Gases , Aprendizado de Máquina
16.
Genet Med ; 24(3): 631-644, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906488

RESUMO

PURPOSE: We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families, involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnormalities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better define the phenotype and pathologic disease mechanism. METHODS: Clinical and genomic investigations were undertaken alongside molecular studies, including immunoblotting and immunofluorescence analyses of variant/wild-type human HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants. RESULTS: Ten newly identified individuals with this condition were investigated, and they were associated with 9 novel pathogenic variants. Clinical studies defined genotype-phenotype correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the condition. In silico modeling of missense variants identified likely deleterious effects on protein folding. Consistent with this, functional studies indicated that these variants cause protein instability and a concomitant cell surface absence of HYAL2 protein. CONCLUSION: These studies confirm an association between HYAL2 alterations and syndromic cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable further insights into the pathomolecular basis of the disease, and delineate the core and variable clinical outcomes of the condition.


Assuntos
Fenda Labial , Fissura Palatina , Alelos , Animais , Moléculas de Adesão Celular/genética , Fenda Labial/genética , Fissura Palatina/genética , Proteínas Ligadas por GPI/genética , Estudos de Associação Genética , Humanos , Hialuronoglucosaminidase/genética , Camundongos , Fenótipo
17.
Clin Genet ; 101(1): 127-133, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612517

RESUMO

Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007-0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype.


Assuntos
Alelos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Nefropatias/diagnóstico , Nefropatias/genética , Proteínas de Membrana/genética , Tronco Arterial/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Substituição de Aminoácidos , Família , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Heterozigoto , Humanos , Fenótipo
19.
Genet Med ; 23(10): 1901-1911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113008

RESUMO

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.


Assuntos
Epilepsia , Fatores de Troca do Nucleotídeo Guanina , Haploinsuficiência , Deficiência Intelectual , Epilepsia/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética
20.
Genet Med ; 23(11): 2138-2149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34244665

RESUMO

PURPOSE: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Relacionadas a Caderinas , Caderinas/genética , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA