RESUMO
In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.
Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA , Regulação Viral da Expressão Gênica , Sequências Hélice-Volta-Hélice , Proteínas de Ligação a RNA , Proteínas Virais , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Sítios de Ligação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Genes Virais , Modelos Moleculares , Conformação de Ácido Nucleico , Pectobacterium carotovorum/virologia , Biossíntese de Proteínas/genética , Domínios Proteicos , Ribossomos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Viral/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Especificidade por Substrato , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/ultraestruturaRESUMO
Bacteria have diverse defenses against phages. In response, jumbo phages evade multiple DNA-targeting defenses by protecting their DNA inside a nucleus-like structure. We previously demonstrated that RNA-targeting type III CRISPR-Cas systems provide jumbo phage immunity by recognizing viral mRNA exported from the nucleus for translation. Here, we demonstrate that recognition of phage mRNA by the type III system activates a cyclic triadenylate-dependent accessory nuclease, NucC. Although unable to access phage DNA in the nucleus, NucC degrades the bacterial chromosome, triggers cell death, and disrupts phage replication and maturation. Hence, type-III-mediated jumbo phage immunity occurs via abortive infection, with suppression of the viral epidemic protecting the population. We further show that type III systems targeting jumbo phages have diverse accessory nucleases, including RNases that provide immunity. Our study demonstrates how type III CRISPR-Cas systems overcome the inaccessibility of jumbo phage DNA to provide robust immunity.
Assuntos
Bacteriófagos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Núcleo Celular , Cromossomos Bacterianos , Endonucleases , RNA MensageiroRESUMO
Horticultural diseases caused by bacterial pathogens provide an obstacle to crop production globally. Management of the infection of kiwifruit by the Gram-negative phytopathogen Pseudomonas syringae pv. actinidiae (Psa) currently includes copper and antibiotics. However, the emergence of bacterial resistance and a changing regulatory landscape are providing the impetus to develop environmentally sustainable antimicrobials. One potential strategy is the use of bacteriophage endolysins, which degrade peptidoglycan during normal phage replication, causing cell lysis and the release of new viral progeny. Exogenous use of endolysins as antimicrobials is impaired by the outer membrane of Gram-negative bacteria that provides an impermeable barrier and prevents endolysins from accessing their target peptidoglycan. Here, we describe the synergy between citric acid and a phage endolysin, which results in a reduction of viable Psa below detection. We show that citric acid drives the destabilization of the outer membrane via acidification and sequestration of divalent cations from the lipopolysaccharide, which is followed by the degradation of the peptidoglycan by the endolysin. Scanning electron microscopy revealed clear morphological differences, indicating cell lysis following the endolysin-citric acid treatment. These results show the potential for citric acid-endolysin combinations as a possible antimicrobial approach in agricultural applications. IMPORTANCE: The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) causes major impacts to kiwifruit horticulture, and the current control strategies are heavily reliant on copper and antibiotics. The environmental impact and increasing resistance to these agrichemicals are driving interest in alternative antimicrobials including bacteriophage-derived therapies. In this study, we characterize the endolysin from the Otagovirus Psa374 which infects Psa. When combined with citric acid, this endolysin displays an impressive antibacterial synergy to reduce viable Psa below the limit of detection. The use of citric acid as a synergistic agent with endolysins has not been extensively studied and has never been evaluated against a plant pathogen. We determined that the synergy involved a combination of the chelation activity of citric acid, acidic pH, and the specific activity of the ΦPsa374 endolysin. Our study highlights an exciting opportunity for alternative antimicrobials in agriculture.
Assuntos
Actinidia , Bacteriófagos , Endopeptidases , Pseudomonas syringae , Cobre , Peptidoglicano , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Actinidia/microbiologiaRESUMO
Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in Serratia cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity.
Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/imunologia , Endodesoxirribonucleases/genética , Regulação Bacteriana da Expressão Gênica/imunologia , Percepção de Quorum/genética , Serratia/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Proteínas de Bactérias/imunologia , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases/imunologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Serratia/efeitos dos fármacos , Serratia/imunologiaRESUMO
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction-modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Assuntos
Bacteriófagos , Enzimas de Restrição-Modificação do DNA , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metilação de DNA/genética , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Endonucleases/metabolismo , Epigênese Genética , Regulação Bacteriana da Expressão GênicaRESUMO
Most bacteria and archaea possess multiple antiviral defence systems that protect against infection by phages, archaeal viruses and mobile genetic elements. Our understanding of the diversity of defence systems has increased greatly in the last few years, and many more systems likely await discovery. To identify defence-related genes, we recently developed the Prokaryotic Antiviral Defence LOCator (PADLOC) bioinformatics tool. To increase the accessibility of PADLOC, we describe here the PADLOC web server (freely available at https://padloc.otago.ac.nz), allowing users to analyse whole genomes, metagenomic contigs, plasmids, phages and archaeal viruses. The web server includes a more than 5-fold increase in defence system types detected (since the first release) and expanded functionality enabling detection of CRISPR arrays and retron ncRNAs. Here, we provide user information such as input options, description of the multiple outputs, limitations and considerations for interpretation of the results, and guidance for subsequent analyses. The PADLOC web server also houses a precomputed database of the defence systems in > 230,000 RefSeq genomes. These data reveal two taxa, Campylobacterota and Spriochaetota, with unusual defence system diversity and abundance. Overall, the PADLOC web server provides a convenient and accessible resource for the detection of antiviral defence systems.
Assuntos
Archaea , Bactérias , Genoma Microbiano , Genômica , Internet , Software , Archaea/genética , Archaea/virologia , Bactérias/genética , Bactérias/virologia , Bacteriófagos/imunologia , Genoma Microbiano/genética , Plasmídeos/genética , Células Procarióticas/metabolismo , Células Procarióticas/virologia , Computadores , Genômica/métodosRESUMO
To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).
Assuntos
Antibiose/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Software , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Archaea/classificação , Archaea/metabolismo , Archaea/virologia , Proteínas Arqueais/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/crescimento & desenvolvimento , Sistemas CRISPR-Cas , DNA Helicases/genética , DNA Helicases/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Cadeias de Markov , Filogenia , Terminologia como AssuntoRESUMO
CRISPR-Cas systems provide bacteria with adaptive immunity against phages and plasmids; however, pathways regulating their activity are not well defined. We recently developed a high-throughput genome-wide method (SorTn-seq) and used this to uncover CRISPR-Cas regulators. Here, we demonstrate that the widespread Rsm/Csr pathway regulates the expression of multiple CRISPR-Cas systems in Serratia (type I-E, I-F and III-A). The main pathway component, RsmA (CsrA), is an RNA-binding post-transcriptional regulator of carbon utilisation, virulence and motility. RsmA binds cas mRNAs and suppresses type I and III CRISPR-Cas interference in addition to adaptation by type I systems. Coregulation of CRISPR-Cas and flagella by the Rsm pathway allows modulation of adaptive immunity when changes in receptor availability would alter susceptibility to flagella-tropic phages. Furthermore, we show that Rsm controls CRISPR-Cas in other genera, suggesting conservation of this regulatory strategy. Finally, we identify genes encoding RsmA homologues in phages, which have the potential to manipulate the physiology of host bacteria and might provide an anti-CRISPR activity.
Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Serratia/genética , Transdução de Sinais/genética , Imunidade Adaptativa/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Flagelos/genética , Regulação Bacteriana da Expressão Gênica/genética , Plasmídeos/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Proteínas Repressoras , Virulência/genéticaRESUMO
Bacteria use adaptive CRISPR-Cas immune mechanisms to protect from invasion by bacteriophages and other mobile genetic elements. In response, bacteriophages and mobile genetic elements have co-evolved anti-CRISPR proteins to inhibit the bacterial defense. We and others have previously shown that anti-CRISPR associated (Aca) proteins can regulate this anti-CRISPR counter-attack. Here, we report the first structure of an Aca protein, the Aca2 DNA-binding transcriptional autorepressor from Pectobacterium carotovorum bacteriophage ZF40, determined to 1.34 Å. Aca2 presents a conserved N-terminal helix-turn-helix DNA-binding domain and a previously uncharacterized C-terminal dimerization domain. Dimerization positions the Aca2 recognition helices for insertion into the major grooves of target DNA, supporting its role in regulating anti-CRISPRs. Furthermore, database comparisons identified uncharacterized Aca2 structural homologs in pathogenic bacteria, suggesting that Aca2 represents the first characterized member of a more widespread family of transcriptional regulators.
Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bactérias , Bacteriófagos/química , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Ligação Proteica , Fatores de Transcrição/genéticaRESUMO
Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; amber disease-associated plasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors.
Assuntos
Besouros , Animais , Larva , Plasmídeos/genética , Prófagos/genética , Virulência/genéticaRESUMO
CRISPR-Cas systems are widespread bacterial adaptive defence mechanisms that provide protection against bacteriophages. In response, phages have evolved anti-CRISPR proteins that inactivate CRISPR-Cas systems of their hosts, enabling successful infection. Anti-CRISPR genes are frequently found in operons with genes encoding putative transcriptional regulators. The role, if any, of these anti-CRISPR-associated (aca) genes in anti-CRISPR regulation is unclear. Here, we show that Aca2, encoded by the Pectobacterium carotovorum temperate phage ZF40, is an autoregulator that represses the anti-CRISPR-aca2 operon. Aca2 is a helix-turn-helix domain protein that forms a homodimer and interacts with two inverted repeats in the anti-CRISPR promoter. The inverted repeats are similar in sequence but differ in their Aca2 affinity, and we propose that they have evolved to fine-tune, and downregulate, anti-CRISPR production at different stages of the phage life cycle. Specific, high-affinity binding of Aca2 to the first inverted repeat blocks the promoter and induces DNA bending. The second inverted repeat only contributes to repression at high Aca2 concentrations in vivo, and no DNA binding was detectable in vitro. Our investigation reveals the mechanism by which an Aca protein regulates expression of its associated anti-CRISPR.
Assuntos
Sistemas CRISPR-Cas/genética , Pectobacterium carotovorum/genética , Transcrição Gênica , Proteínas Virais/genética , Bacteriófagos/genética , Escherichia coli/genética , Óperon/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos/genética , Fatores de Transcrição/genéticaRESUMO
CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invading genetic elements, such as plasmids, bacteriophages and archaeal viruses. They consist of cas genes and CRISPR loci, which store genetic memories of previously encountered invaders as short sequences termed spacers. Spacers determine the specificity of CRISPR-Cas defence and immunity can be gained or updated by the addition of new spacers into CRISPR loci. There are two main routes to spacer acquisition, which are known as naïve and primed CRISPR adaptation. Naïve CRISPR adaptation involves the de novo formation of immunity, independent of pre-existing spacers. In contrast, primed CRISPR adaptation (priming) uses existing spacers to enhance the acquisition of new spacers. Priming typically results in spacer acquisition from locations near the site of target recognition by the existing (priming) spacer. Primed CRISPR adaptation has been observed in several type I CRISPR-Cas systems and it is potentially widespread. However, experimental evidence is unavailable for some subtypes, and for most systems, priming has only been shown in a small number of hosts. There is also no current evidence of priming by other CRISPR-Cas types. Here, we used a bioinformatic approach to search for evidence of priming in diverse CRISPR-Cas systems. By analysing the clustering of spacers acquired from phages, prophages and archaeal viruses, including strand and directional biases between subsequently acquired spacers, we demonstrate that two patterns of primed CRISPR adaptation dominate in type I systems. In addition, we find evidence of a priming-like pathway in type II CRISPR-Cas systems.
Assuntos
Adaptação Fisiológica/genética , Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , Genoma Viral , Prófagos/genéticaRESUMO
The PsbL protein is a 4.5kDa subunit at the monomer-monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion of conserved residues in the N-terminal region has been used to investigate the importance of this hydrophilic extension. Using Synechocystis sp. PCC 6803, three deletion strains: ∆(N6-N8), ∆(P11-V12) and ∆(E13-N15), have been created. The ∆(N6-N8) and ∆(P11-V12) strains remained photoautotrophic but were more susceptible to photodamage than the wild type; however, the ∆(E13-N15) cells had the most severe phenotype. The Δ(E13-N15) mutant showed decreased photoautotrophic growth, a reduced number of PS II centers, impaired oxygen evolution in the presence of PS II-specific electron acceptors, and was highly susceptible to photodamage. The decay kinetics of chlorophyll a variable fluorescence after a single turnover saturating flash and the sensitivity to low concentrations of PS II-directed herbicides in the Δ(E13-N15) strain indicate that the binding of plastoquinone to the QB-binding site had been altered such that the affinity of QB is reduced. In addition, the PS II-specific electron acceptor 2,5-dimethyl-p-benzoquinone was found to inhibit electron transfer through the quinone-acceptor complex of the ∆(E13-N15) strain. The PsbL Y20A mutant was also investigated and it exhibited increased susceptibility to photodamage and increased herbicide sensitivity. Our data suggest that the N-terminal hydrophilic region of PsbL influences forward electron transfer from QA through indirect interactions with the D-E loop of the D1 reaction center protein. Our results further indicate that disruption of interactions between the N-terminal region of PsbL and other PS II subunits or lipids destabilizes PS II dimer formation. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Assuntos
Complexo de Proteína do Fotossistema II/química , Plastoquinona/química , Synechocystis/metabolismo , Sequência de Aminoácidos , Clorofila/química , Clorofila A , Transporte de Elétrons , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Multimerização ProteicaRESUMO
Cyanobacterial glycogen-deficient mutants display impaired degradation of light-harvesting phycobilisomes under nitrogen-limiting growth conditions and secrete a suite of organic acids as a putative reductant-spilling mechanism. This genetic background, therefore, represents an important platform to better understand the complex relationships between light harvesting, photosynthetic electron transport, carbon fixation, and carbon/nitrogen metabolisms. In this study, we conducted a comprehensive analysis of the dynamics of photosynthesis as a function of reductant sink manipulation in a glycogen-deficient glgC mutant of Synechococcus sp. strain PCC 7002. The glgC mutant showed increased susceptibility to photoinhibition during the initial phase of nitrogen deprivation. However, after extended periods of nitrogen deprivation, glgC mutant cells maintained higher levels of photosynthetic activity than the wild type, supporting continuous organic acid secretion in the absence of biomass accumulation. In contrast to the wild type, the glgC mutant maintained efficient energy transfer from phycobilisomes to photosystem II (PSII) reaction centers, had an elevated PSII/PSI ratio as a result of reduced PSII degradation, and retained a nitrogen-replete-type ultrastructure, including an extensive thylakoid membrane network, after prolonged nitrogen deprivation. Together, these results suggest that multiple global signals for nitrogen deprivation are not activated in the glgC mutant, allowing the maintenance of active photosynthetic complexes under conditions where photosynthesis would normally be abolished.
Assuntos
Glicogênio/deficiência , Fotossíntese , Synechococcus/metabolismo , Biomassa , Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Metabolismo Energético , Deleção de Genes , Nitrogênio/metabolismoRESUMO
Homologs of the Photosystem II (PS II) subunit PsbP are found in plants, algae, and cyanobacteria. In higher plants, PsbP is associated with mature PS II centers, but in cyanobacteria, the homologous CyanoP protein appears sub-stoichiometric to PS II. We have investigated the role of CyanoP by characterizing knockout mutants of the cyanobacterium Synechocystis sp. PCC 6803. Removal of CyanoP resulted in changes to phycobilisome coupling and energy transfer to PS II, but the function of PS II itself remained similar to wild type. We therefore investigated the hypothesis that CyanoP is involved in the biogenesis or repair of PS II by creating a double mutant lacking both CyanoP and the PS II assembly factor Ycf48. This strain exhibited an additive reduction in the amplitude of variable chlorophyll a fluorescence induction relative to either of the single mutants but displayed increased oxygen evolution, slight increases in PS II monomer and dimer levels, and a reduction in accumulation of an early PS II assembly complex containing CP47, compared to the ΔYcf48 strain.
Assuntos
Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Ficobilissomas/metabolismo , Synechocystis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Técnicas de Inativação de Genes , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Tilacoides/metabolismoRESUMO
BACKGROUND: Transcatheter aortic valve implantation (TAVI) can cause profound haemodynamic perturbation in the peri-operative period. Veno-arterial extracorporeal membrane oxygenation (ECMO) can be used to provide cardiorespiratory support during this time, either prophylactically or emergently. METHOD: 100 TAVI procedures were performed between 2009 and 2013 in our institution. ECMO was used in 11 patients, including eight prophylactic and three rescue cases. Rescue ECMO was required for ventricular fibrillation after valvuloplasty, and aortic annulus rupture. The criteria for prophylactic ECMO included heart failure requiring stabilisation pre-TAVI, haemodynamic instability with balloon aortic valvuloplasty performed to improve heart function pre-TAVI, moderate or severe left and/or right ventricular failure, or borderline haemodynamics at procedure. Differences in preoperative characteristics and postoperative outcomes between ECMO and non-ECMO TAVI patients were compared, and significant results were further assessed controlling for EuroSCORE. RESULTS: Compared to TAVI patients who did not require ECMO, ECMO patients had significantly higher mean EuroSCORE (51 vs. 30%, p<.05). Postoperative outcomes, however, were largely comparable between the two groups. All-cause mortality occurred in nil prophylactic ECMO patients, one rescue ECMO patient, and two non-ECMO patients. The difference in mortality between ECMO and non-ECMO patients was not significantly different (9 vs. 2%; p>.05). ECMO patients were more likely to develop acute renal failure than non-ECMO patients (36 vs. 8%, p<.05), which was most likely due to haemodynamic collapse and end-organ dysfunction in patients that required ECMO rescue. CONCLUSIONS: Instituting prophylactic ECMO in selected very high-risk patients may help avoid consequences of intra-operative complications and the need for emergent rescue ECMO.
Assuntos
Estenose da Valva Aórtica/cirurgia , Oxigenação por Membrana Extracorpórea , Substituição da Valva Aórtica Transcateter , Injúria Renal Aguda/etiologia , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/complicações , Emergências , Oxigenação por Membrana Extracorpórea/efeitos adversos , Feminino , Insuficiência Cardíaca/complicações , Hemodinâmica , Humanos , Masculino , Procedimentos Cirúrgicos Profiláticos , Medição de Risco , Fatores de Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/terapiaRESUMO
While bacteriophage applications benefit from effective phage engineering, selecting the desired genotype after subtle modifications remains challenging. Here, we describe a two-phase endogenous CRISPR-Cas-based phage engineering approach that enables selection of small defined edits in Pectobacterium carotovorum phage ZF40. We designed plasmids containing sequences homologous to ZF40 and a mini-CRISPR array. The plasmids allowed genome editing through homologous recombination and counter-selection against non-recombinant phage genomes using an endogenous type I-E CRISPR-Cas system. With this technique, we first deleted target genes and subsequently restored loci with modifications. This two-phase approach circumvented major challenges in subtle phage modifications, including inadequate sequence distinction for CRISPR-Cas counter-selection and the requirement of a protospacer-adjacent motif, limiting sequences that can be modified. Distinct 20-bp barcodes were incorporated through engineering as differential target sites for programmed CRISPR-Cas activity, which allowed quantification of phage variants in mixed populations. This method aids studies and applications that require mixtures of similar phages.
RESUMO
Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.
Assuntos
Anti-Infecciosos , Bacteriófagos , Antibacterianos/química , Peptidoglicano/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química , Anti-Infecciosos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bacteriófagos/metabolismoRESUMO
The structure of the CyanoP subunit of photosystem II from the cyanobacterium Synechocystis sp. PCC 6803 has been determined in solution by Nuclear Magnetic Resonance spectroscopy. Combined with homology modeling of PsbP-like structures we have identified distinct structural differences between PsbP homologues which may account for the functional differences apparent between members of this protein family. A surface cleft containing a large number of conserved residues found only in CyanoP and PsbP-like homologues has been identified and our findings suggest that one of the potential cation binding sites found in CyanoP may be functionally significant. Evidence for the evolution and divergence of the PsbP super family is presented from a structural perspective including identification of residues which distinguish the PsbP family from unrelated proteins with a similar domain fold. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.