Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
PLoS Pathog ; 18(8): e1010696, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925884

RESUMO

As effector innate immune cells and as a host to the protozoan parasite Leishmania, macrophages play a dual role in antileishmanial immunoregulation. The 2 key players in this immunoregulation are the macrophage-expressed microRNAs (miRNAs) and the macrophage-secreted cytokines. miRNAs, as small noncoding RNAs, play vital roles in macrophage functions including cytokines and chemokines production. In the reverse direction, Leishmania-regulated cytokines alter miRNAs expression to regulate the antileishmanial functions of macrophages. The miRNA patterns vary with the time and stage of infection. The cytokine-regulated macrophage miRNAs not only help parasite elimination or persistence but also regulate cytokine production from macrophages. Based on these observations, we propose a novel immunoregulatory framework as a scientific rationale for antileishmanial therapy.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , MicroRNAs , Parasitos , Animais , Antiprotozoários/metabolismo , Citocinas/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniose/metabolismo , Macrófagos , MicroRNAs/metabolismo , Parasitos/metabolismo
2.
Cytokine ; 174: 156461, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065046

RESUMO

Establishing a balance between Th1 and Th2 subsets and M1- and M2-type macrophages is essential for the control of Leishmania infection. The suppressors of cytokine secretion (SOCS) proteins, particularly SOCS1 and SOCS3, play a significant role in regulating cytokine-triggered signaling pathways, thereby impacting the macrophage-and effector T-cell mediated antileishmanial immune response. In addition to the pro-inflammatory cytokines, Leishmania-derived lipophosphoglycan (LPG) and CpG-DNA interact with TLR2 and TLR9 to trigger SOCS expression. The aberrant levels of SOCS1 and SOCS3 expression in Leishmania-infected macrophages impair macrophage-T-cell interaction perturbing the balance in macrophage subsets polarization. This hinders macrophage apoptosis and macrophage-mediated leishmanicidal activity, both support the establishment of infection and parasite replication. Furthermore, aberrant SOCS3 levels in T-cells disrupt Th1 differentiation and aid in parasite replication, lesion development, and pathological immune responses. Strategically, selective modulation of SOCS expression and function in immune effector cells may reduce parasite survival and prevent disease progression.


Assuntos
Leishmania , Proteínas Supressoras da Sinalização de Citocina , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Citocinas/metabolismo , Imunidade
3.
Cytotherapy ; 26(8): 797-805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625068

RESUMO

Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Neutrófilos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neutrófilos/metabolismo , Neutrófilos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/metabolismo
4.
Helicobacter ; 29(3): e13105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924222

RESUMO

Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Proteínas Supressoras da Sinalização de Citocina , Humanos , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/microbiologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais
5.
Immunopharmacol Immunotoxicol ; 46(1): 73-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37647347

RESUMO

PURPOSE: In dendritic cells (DCs), leptin as an immune-regulating hormone, increases the IL-12 generation whereas it reduces the IL-10 production, thus contributing to TH1 cell differentiation. Using a murine model of breast cancer (BC), we evaluated the impacts of the Leptin and/or lipopolysaccharide (LPS)-treated DC vaccine on various T-cell-related immunological markers. MATERIALS AND METHODS: Tumors were established in mice by subcutaneously injecting 7 × 105 4T1 cells into the right flank. Mice received the DC vaccines pretreated with Leptin, LPS, and both Leptin/LPS, on days 12 and 19 following tumor induction. The animals were sacrificed on day 26 and after that the frequency of the splenic cytotoxic T lymphocytes (CTLs) and TH1 cells; interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor growth factor beta (TGF-ß) generation by tumor lysate-stimulated spleen cells, and the mRNA expression of T-bet, FOXP3 and Granzyme B in the tumors were measured with flow cytometry, ELISA and real-time PCR methods, respectively. RESULTS: Leptin/LPS-treated mDC group was more efficient in blunting tumor growth (p = .0002), increasing survival rate (p = .001), and preventing metastasis in comparison with the untreated tumor-bearing mice (UT-control). In comparison to the UT-control group, treatment with Leptin/LPS-treated mDC also significantly increased the splenic frequencies of CTLs (p < .001) and TH1 cells (p < .01); promoted the production of IFN-γ (p < .0001) and IL-12 (p < .001) by splenocytes; enhanced the T-bet (p < .05) and Granzyme B (p < .001) expression, whereas decreased the TGF-ß and FOXP3 expression (p < .05). CONCLUSION: Compared to the Leptin-treated mDC and LPS-treated mDC vaccines, the Leptin/LPS-treated mDC vaccine was more effective in inhibiting BC development and boosting immune responses against tumor.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Granzimas/metabolismo , Leptina/metabolismo , Imunidade Celular , Fator de Crescimento Transformador beta/metabolismo , Interferon gama/metabolismo , Modelos Animais , Neoplasias/metabolismo , Interleucina-12 , Vacinas/metabolismo , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo
6.
Cell Immunol ; 393-394: 104778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907046

RESUMO

Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-ß (Aß) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Linfócitos T Reguladores , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides , Sistema Nervoso Central , Microglia
7.
Clin Exp Allergy ; 53(11): 1147-1161, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37641429

RESUMO

Suppressor of cytokine signalling (SOCS) proteins bind to certain cytokine receptors, Janus kinases and signalling molecules to regulate signalling pathways, thus controlling immune and inflammatory responses. Dysregulated expression of various types of SOCS molecules was indicated in multiple types of allergic diseases. SOCS1, SOCS2, SOCS3, SOCS5, and cytokine-inducible SH2 domain protein (CISH) can differentially exert anti-allergic impacts through different mechanisms, such as suppressing Th2 cell development and activation, reducing eosinophilia, decreasing IgE production, repressing production of pro-allergic chemokines, promoting Treg cell differentiation and activation, suppressing Th17 cell differentiation and activation, increasing anti-allergic Th1 responses, inhibiting M2 macrophage polarization, modulating survival and development of mast cells, reducing pro-allergic activity of keratinocytes, and suppressing pulmonary fibrosis. Although some anti-allergic effects were attributed to SOCS3, it can perform pro-allergic impacts through several pathways, such as promoting Th2 cell development and activation, supporting eosinophilia, boosting pro-allergic activity of eosinophils, increasing IgE production, enhancing the expression of the pro-allergic chemokine receptor, reducing Treg cell differentiation, increasing pro-allergic Th9 responses, as well as supporting mucus secretion and collagen deposition. In this review, we discuss the contrasting roles of SOCS proteins in contexts of allergic disorders to provide new insights regarding the pathophysiology of these diseases and possibly explore SOCS proteins as potential therapeutic targets for alleviating allergies.


Assuntos
Antialérgicos , Eosinofilia , Hipersensibilidade , Humanos , Hipersensibilidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Citocinas/metabolismo , Imunoglobulina E/metabolismo
8.
Parasite Immunol ; 45(8): e13000, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37338019

RESUMO

Toll-like receptors (TLRs) and inflammasomes belong to the pattern recognition receptors (PRRs) of innate immunity identifying conserved compounds produced by pathogens or discharged by injured cells. Different cell subsets in the human urogenital system, such as epithelial cells and infiltrating leukocytes, express different kinds of TLRs (such as TLR2, TLR3, TLR4, TLR5 and TLR9) as well as inflammasomes (such as NLRP3, NLRC4 and AIM2). Various types of the Trichomonas vaginalis-derived components such as glycosyl-phosphatidylinositol (GPI), T. vaginalis virus (TVV), Lipophosphoglycan (LPG) and flagellin can be recognized by TLR2, TLR3, TLR4 and TLR5, respectively, leading to the production of proinflammatory cytokines and chemokines in the cervicovaginal mucosa. The T. vaginalis-induced inflammasomes can lead to pyroptosis as well as the release of IL-1ß and IL-18 promoting innate and adaptive immune responses. The PRR-mediated responses to T. vaginalis may contribute to the induction of protective immune responses, local inflammation, promotion of co-infections, or even the development of malignancies, for example, prostate cancer. The protective or pathogenic roles of the TLRs and inflammasomes during trichomoniasis are highlighted in this review. A better understanding of PRR-mediated responses provides invaluable insights to develop effective immunotherapeutic strategies against T. vaginalis infection.


Assuntos
Inflamassomos , Tricomoníase , Masculino , Humanos , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptor 3 Toll-Like , Receptor 5 Toll-Like , Receptores Toll-Like
9.
Indian J Med Res ; 158(4): 432-438, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006346

RESUMO

BACKGROUND OBJECTIVES: Semaphorins were initially characterized as axon guidance factors but were subsequently implicated in the regulation of immune responses, angiogenesis, organ formation and a variety of other physiological and developmental functions. Various semaphorins enhance or inhibit tumour progression through different mechanisms. The objective of this study was to assess the expression of various semaphorins and vascular endothelial growth factor (VEGF) gene transcripts as well as the serum level of Sema3A in individuals with laryngeal squamous cell carcinoma (LSCC). METHODS: Tissue expression of Sema3A, Sema3C, Sema4D, Sema6D and VEGF was determined in both tumour tissues and tissues around the tumour from 30 individuals with pathologically confirmed LSCC using quantitative real-time PCR. Furthermore, the serum level of Sema3A in these individuals was assessed using enzyme-linked immunosorbent assay. RESULTS: Sema3C gene transcript showed a significant increase (P=0.001), while Sema4D was observed with a significant decrease in tumour samples compared to non-tumoural tissues (P≤0.01). The expression of the Sema3C gene was found to be associated with the stage of LSCC tumour as it was statistically significant for tumours with stage IV (P<0.01). The serum level of Sema3A was not found to be significant between cases and controls. INTERPRETATION CONCLUSIONS: Increased expression of Sema3C but decreased expression of Sema4D in tumour tissue of LSCC may introduce these two growth factors as crucial mediators orchestrating tumour growth in individuals with LSCC. This result could open a new vision for the treatment of this malignancy.


Assuntos
Neoplasias de Cabeça e Pescoço , Semaforinas , Humanos , Semaforina-3A/genética , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Semaforinas/genética , Semaforinas/metabolismo
10.
Cytokine ; 153: 155839, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276636

RESUMO

The expression of programmed cell death protein-1 (PD-1) and its ligands- PD-L1 and PD-L2- on T cells and macrophages', respectively, increases in Leishmania infection. The PD-1/PD-L1 interaction induces T cell anergy, T cell apoptosis and exhaustion, diversion of T cells toward TH2 and T-reg cells but inhibits M1 macrophage activities by suppression of nitric oxide (NO) and reactive oxygen species (ROS) production. These changes exacerbate Leishmania infection. As PD-L1-deficient, but not PD-L2-deficient, mice were protected againstL. mexicanainfection, differential roles have been proposed for PD-L1 and PD-L2 in mouse models of leishmaniasis. Blockade of PD-1/PD-L1 interaction in various in vitro and Leishmania-infected mouse, hamster and dog models enhanced IFN-γ and NO production, reduced IL-10 and TGF-ß generation, promoted T cell proliferation and reduced parasite burden. Therefore, PD-1/PD-L1 blockade is being considered as a potential therapeutic strategy to restore protective immunity during leishmaniasis, particularly, in drug-resistant cases.


Assuntos
Leishmaniose , Parasitos , Animais , Antígeno B7-H1/metabolismo , Cães , Leishmaniose/tratamento farmacológico , Ligantes , Camundongos , Receptor de Morte Celular Programada 1
11.
Bull World Health Organ ; 100(8): 474-483, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35923277

RESUMO

Objective: To investigate the incidence of coronavirus disease 2019 (COVID-19) cases, hospitalizations and deaths in Iranians vaccinated with either AZD1222 Vaxzevria, CovIran® vaccine, SARS-CoV-2 Vaccine (Vero Cell), Inactivated (lnCoV) or Sputnik V. Methods: We enrolled individuals 18 years or older receiving their first COVID-19 vaccine dose between April 2021 and January 2022 in seven Iranian cities. Participants completed weekly follow-up surveys for 17 weeks (25 weeks for AZD1222) to report their COVID-19 status and hospitalization. We used Cox regression models to assess risk factors for contracting COVID-19, hospitalization and death. Findings: Of 89 783 participants enrolled, incidence rates per 1 000 000 person-days were: 528.2 (95% confidence interval, CI: 514.0-542.7) for contracting COVID-19; 55.8 (95% CI: 51.4-60.5) for hospitalization; and 4.1 (95% CI: 3.0-5.5) for death. Compared with SARS-CoV-2 Vaccine (Vero Cell), hazard ratios (HR) for contracting COVID-19 were: 0.70 (95% CI: 0.61-0.80) with AZD1222; 0.73 (95% CI: 0.62-0.86) with Sputnik V; and 0.73 (95% CI: 0.63-0.86) with CovIran®. For hospitalization and death, all vaccines provided similar protection 14 days after the second dose. History of COVID-19 protected against contracting COVID-19 again (HR: 0.76; 95% CI: 0.69-0.84). Diabetes and respiratory, cardiac and renal disease were associated with higher risks of contracting COVID-19 after vaccination. Conclusion: The rates of contracting COVID-19 after vaccination were relatively high. SARS-CoV-2 Vaccine (Vero Cell) provided lower protection against COVID-19 than other vaccines. People with comorbidities had higher risks of contracting COVID-19 and hospitalization and should be prioritized for preventive interventions.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Estudos de Coortes , Hospitalização , Humanos , Irã (Geográfico)/epidemiologia , SARS-CoV-2 , Vacinação
12.
Indian J Med Res ; 155(3&4): 335-346, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124508

RESUMO

The utilization of the monoclonal antibodies (mAbs) as therapeutic agents is one of the most favourable fields in immunotherapy. The immunogenicity of mAbs is one of the major parameters that may restrict their therapeutic and diagnostic applications. Rituximab, a chimeric mAb against CD20, is attached to the B-cell membrane-linked CD20 and is used to treat some B-cell-related malignancies, a number of autoantibody-mediated autoimmune disorders and improvement of graft survival. The risk of anti-rituximab antibody (ARA) development and ARA-related adverse events are low in rituximab-treated patients with lymphoma. No important association was reported between the ARA positivity and drug levels, and drug efficacy in rituximab-treated patients with lymphoma. The patients with autoimmune disorders exhibit greater risk of ARA development and ARA-related adverse events. In autoimmune diseases, ARA positivity may have no significant impact on either the drug level or its efficacy, (i.e.), it may reduce drug levels without influencing drug efficacy and, vice versa, or may reduce both drug level as well as its efficacy. The characterization of the parameters affecting the production of ARA can be used to design strategies to reduce the immunogenicity of mAb and promote its efficacy in humans. In this review, the host and therapeutic programme-related parameters affecting the development of the ARA have been discussed to suggest novel insights to reduce ARA-associated adverse events and enhance the drug efficacy.


Assuntos
Antígenos CD20 , Doenças Autoimunes , Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Linfócitos B , Humanos , Rituximab/efeitos adversos
13.
Immunopharmacol Immunotoxicol ; 44(5): 773-785, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35620857

RESUMO

OBJECTIVE: Th9- and regulatory T (Treg) cells exert pro- and anti-allergic activity, respectively. Mesenchymal stem cell (MSC)-related immunomodulatory impacts can be enhanced by inflammatory cytokines. Here, the modulatory effects of IFN-γ/TNF-α-induced MSCs on Th9- and Treg cell-related parameters were investigated using an asthma model. METHODS: Allergic asthma was induced in BALB/c mice using sensitized and challenging with ovalbumin (OVA). The asthmatic groups were treated intraperitoneally with PBS, MSCs, IFN-γ-induced MSCs, TNF-α-induced MSCs and 'IFN-γ + TNF-α'-induced MSCs before the challenge phase. The mice were sacrificed 24 h after challenge. The serum IL-9 and IL-35 levels, as well as gene expression of IL-9, PU.1, IL-35-EBI3, and FOXP3 in the lung tissues were assessed using ELISA and real time-PCR, respectively. RESULTS: The differences of Th9 and Treg-related parameters were not significant between untreated asthmatic mice and those treated with non-induced MSCs. In comparison with untreated asthmatic group, treatment with IFN-γ-induced MSCs significantly reduced serum IL-9 levels, reduced lung expression of IL-9 and PU.1, while increasing serum IL-35 levels as well as lung expression of FOXP3; treatment with TNF-α-induced MSCs significantly reduced serum IL-9 levels as well as lung expression of IL-9, and treatment with 'IFN-γ + TNF-α'-induced MSCs, significantly modulated all investigated Th9 and Treg-related parameters. In comparison to mice treated with non-induced MSCs, serum IL-9 levels were remarkably decreased in mice treated with IFN-γ-induced and 'IFN-γ + TNF-α'-induced MSCs. CONCLUSIONS: IFN-γ-and 'IFN-γ + TNF-α' treated MSCs exerted almost comparable impacts, but were more efficient than TNF-α-exposed MSCs. Thus, IFN-γ alone can be sufficient to promote immunomodulatory effects of MSCs.


Assuntos
Antialérgicos , Asma , Células-Tronco Mesenquimais , Animais , Antialérgicos/farmacologia , Asma/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Interferon gama/metabolismo , Interleucina-9/metabolismo , Interleucina-9/farmacologia , Interleucina-9/uso terapêutico , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa/metabolismo
14.
Cytokine ; 147: 155321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33039255

RESUMO

Infection with the same species of Leishmania (L)donovani causes different manifestations including visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL), indicating that the host-related immunological parameters perform a decisive role in the pathogenesis of diseases. As PKDL is a reservoir of the parasite, a better understanding of the host immune responses is necessary to restrict the L. donovani transmission. The proper local production of Th1 cell-related cytokines (including IFN-γ, TNF-α and IL-12), Th17 cell-derived cytokines (such as IL-17A, IL-17F and IL-22), and CD8+ cytotoxic T lymphocyte (CTL)-derived IFN-γ are protective against PKDL. However, dominant production of regulatory CD4+ T cell-derived cytokines (such as IL-10 and TGF-ß), Th2 cell-derived cytokines (such as IL-4/IL-13), M2 macrophage-derived cytokines (such as IL-4 and IL-10), keratinocyte-derived IL-10, regulatory CD8+ T cell-derived IL-10, and dendritic cell-derived IL-10, IL-27 and IL-21 can contribute to the parasite persistence and PKDL development. Understanding of the T cell-related cytokine network within PKDL lesions gives rise to novel insights concerning the role of each cytokine in the protection or susceptibility to disease. Manipulation of the cytokine network can be considered as an interesting immunotherapeutic strategy for the treatment of L. donovani-mediated PKDL.


Assuntos
Citocinas/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Linfócitos T/imunologia , Animais , Humanos , Leishmania donovani/imunologia
15.
Microb Pathog ; 154: 104836, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33691172

RESUMO

Hyper-inflammatory responses, lymphopenia, unbalanced immune responses, cytokine storm, large viral replication and massive cell death play fundamental roles in the pathogenesis of COVID-19. Extreme production of many kinds of pro-inflammatory cytokines and chemokines occur in severe COVID-19 that called cytokine storm. Signal transducer and activator of transcription-3 (STAT-3) present in the cytoplasm in an inactive form and can be stimulated by a vast range of cytokines, chemokines and growth factors. Thus, STAT-3 can participate in the induction of inflammatory responses during coronavirus infections. STAT-3 can also suppress anti-virus interferon response and induce unbalanced anti-virus adaptive immune response, through influencing Th17-, Th1-, Treg-, and B cell-mediated functions. Furthermore, STAT-3 can contribute to the M2 macrophage polarization, lung fibrosis and thrombosis. Moreover, STAT-3 may be directly targeted by some virus-derived protein and operate as a pro-viral or anti-viral element in a virus-specific process. Here, the possible contribution of STAT-3 to the pathogenesis of COVID-19 was explained, while providing potential approaches to target this transcription factor in an attempt for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Humanos , SARS-CoV-2 , Fator de Transcrição STAT3
16.
Scand J Immunol ; 93(2): e12967, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32875598

RESUMO

The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.


Assuntos
COVID-19/imunologia , Linfopenia/imunologia , SARS-CoV-2/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Pneumonia Viral/imunologia
17.
Scand J Immunol ; 93(2): e12959, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32797730

RESUMO

Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.


Assuntos
Fatores Imunológicos/imunologia , Interleucina-27/imunologia , Sistema Respiratório/imunologia , Rinite Alérgica/imunologia , Animais , Asma/imunologia , Células Dendríticas/imunologia , Humanos
18.
Parasite Immunol ; 43(9): e12870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028815

RESUMO

Following inoculation of Leishmania, a protozoan parasite, into the skin of a mammal, the epidermal keratinocytes recognize the parasite and influence the local immune response that can give rise to different outcomes of leishmaniasis. The early keratinocyte-derived cytokines and keratinocytes-T cells interactions shape the anti-leishmanial immune responses that contribute to the resistance or susceptibility to leishmaniasis. The keratinocyte-derived cytokines can directly potentiate the leishmanicidal activity of monocytes and macrophages. As keratinocytes express MHC-II and enhance the expression of costimulatory molecules, these cells act as antigen-presenting cells (APCs) in cutaneous leishmaniasis (CL). Depending on the epidermal microenvironment, the keratinocytes induce various types of effector CD4+ T cells. Keratinocyte apoptosis and necrosis have been also implicated in ulceration in CL. Further, keratinocytes contribute to the healing of Leishmania-related cutaneous wounds. However, keratinocyte-derived IL-10 may play a key role in the development of post-kala-azar dermal leishmaniasis (PKDL). In this review, a comprehensive discussion regarding the multiple roles played by keratinocytes during leishmaniasis was provided, while highlighting novel insights concerning the immunological and pathological roles of these cells.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Animais , Queratinócitos , Pele
19.
J Res Med Sci ; 26: 91, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899929

RESUMO

BACKGROUND: Anesthesiologists should obtain the best technique for cesarean section (CS). This study designed to compare the effect of general anesthesia (GA) and spinal anesthesia (SA) on immune system function in elective CS. MATERIALS AND METHODS: This descriptive study was performed on forty candidates for elective CS. They were randomly divided into GA and SA groups. The serum concentrations of interleukin (IL)-4, IL-6, IL-10, and IL-17 and interferon-gamma (IFN-γ) were measured using ELISA method prior to anesthesia (T0), immediately after the uterine incision (T1), 2 h post CS (T2), and 24 h post CS (T3). Data were analyzed using descriptive statistics and Chi-square, independent t-test, and repeated measures. RESULTS: No significant differences were observed between the GA and SA groups regarding the serum levels of IL-4, IL-6, IL-10, IL-17, and IFN-γ. The serum levels of transforming growth factor beta (TGF-ß) in the SA group were significantly (P = 0.003) more than that of the GA group at T3. CONCLUSION: According to the angiogenesis properties of TGF-ß, it seems that SA probably affects the rate of recovery more than that of the GA.

20.
Cytokine ; 126: 154928, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751903

RESUMO

The immunopathologic responses play a major role in the development of H. pylori (HP)-related gastrointestinal diseases. IL-37 is an anti-inflammatory cytokine with potent suppressive effects on innate and adaptive immune responses. Here, we investigated the IL-37 levels and two single nucleotide polymorphisms (SNPs) including rs3811047 and rs2723176 in IL-37 gene in HP-infected peptic ulcer (PU) patients to identify any relationship. Three groups, including 100 HP-infected PU patients, 100 HP-infected asymptomatic (AS) subjects and 100 non-infected healthy control (NHC) subjects were enrolled to study. Serum IL-37 levels and the genotyping at rs3811047 and rs2723176 were determined using ELISA and SSP-PCR methods, respectively. Significantly higher IL-37 levels were observed in PU patients compared with AS and NHC groups (P < 0.0001). In both PU and AS groups, the CagA+ HP-infected participants displayed higher IL-37 levels compared with those infected with CagA- strains (P < 0.0001). There were significant differences between PU, AS and NHC groups regarding the distribution of genotypes and alleles at rs3811047 and rs2723176 SNPs. The genotype GG and allele G at IL-37 rs3811047 SNP, and the genotype CC and allele C at IL-37 rs2723176 SNP more frequently expressed in PU patients than total healthy subjects (AS + NHC groups) and were associated with an increased risk of PU development (genotype GG: RR = 3.08, P < 0.009; allele G: RR = 2.94, P < 0.01; genotype CC: RR = 5, P < 0.01; and allele C: RR = 5.0, P < 0.02, respectively). The PU patients with allele A at IL-37 rs2723176 SNP expressed higher amounts of IL-37 compared with patients carried allele C at the same position (P < 0.05). In AS carriers and NHC individuals, the IL-37 levels in subjects carried genotype AA or allele A at IL-37 rs2723176 SNP were higher than those carried genotype CC or allele C at the same location (P < 0.01 and P < 0.02 for AS group; P < 0.0001 and P < 0.001 for NHC subjects, respectively). The increased IL-37 levels may be considered as a valuable marker of PU development in HP-infected individuals. The SNPs rs3811047 and rs2723176 were associated with PU development. The CagA status of HP and IL-37 rs2723176 SNP may affect the IL-37 levels.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Helicobacter/sangue , Interleucina-1/sangue , Interleucina-1/genética , Úlcera Péptica/sangue , Adulto , Anticorpos Antibacterianos/sangue , Feminino , Frequência do Gene/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Úlcera Péptica/microbiologia , Úlcera Péptica/patologia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA