Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sustain Sci ; : 1-16, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37363302

RESUMO

Coping with surprise and uncertainty resulting from the emergence of undesired and unexpected novelty or the sudden reorganization of systems at multiple spatiotemporal scales requires both a scientific process that can incorporate diverse expertise and viewpoints, and a scientific framework that can account for the structure and dynamics of interacting social-ecological systems (SES) and the inherent uncertainty of what might emerge in the future. We argue that combining a convergence scientific process with a panarchy framework provides a pathway for improving our understanding of, and response to, emergence. Emergent phenomena are often unexpected (e.g., pandemics, regime shifts) and can be highly disruptive, so can pose a significant challenge to the development of sustainable and resilient SES. Convergence science is a new approach promoted by the U.S. National Science Foundation for tackling complex problems confronting humanity through the integration of multiple perspectives, expertise, methods, tools, and analytical approaches. Panarchy theory is a framework useful for studying emergence, because it characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It accounts for the fundamental tenets of complex systems and explicitly grapples with emergence, including the emergence of novelty, and the emergent property of social-ecological resilience. We provide an overview of panarchy, convergence science, and emergence. We discuss the significant data and methodological challenges of using panarchy in a convergence approach to address emergent phenomena, as well as state-of-the-art methods for overcoming them. We present two examples that would benefit from such an approach: climate change and its impacts on social-ecological systems, and the relationships between infectious disease and social-ecological systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35457515

RESUMO

The outcomes of drought can be difficult to assess due to the complexity of its effects. While most risk assessments of drought are developed for agriculture or water resources, the associations with human health are not well studied due to unclear and complex pathways. This study is the first to assess potential changes in health risk from droughts during the last decade in the contiguous United States. To assess the risk, we spatially superimposed vulnerability variables associated with drought on historical drought exposure over the last decade. Different variations in Local Moran's I statistics were used to assess the spatial distribution of health vulnerability, risk of drought, and changes in the two five-year study periods (2010-2014 and 2015-2019). Our results show large clusters of the western United States had a significant increase in risk during the latter part of the study period due to increases in vulnerability and hazard. In addition, southern areas of the United States were consistently above the national average in drought risk. Since our vulnerability variables include agriculture, drinking water, and sociodemographic indicators, the results of this study can help various experts interested in drought preparedness efforts associated with human health.


Assuntos
Agricultura , Secas , Humanos , Medição de Risco , Estados Unidos , Recursos Hídricos
3.
Geohealth ; 5(10): e2021GH000478, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34723046

RESUMO

Heatwaves cause excess mortality and physiological impacts on humans throughout the world, and climate change will intensify and increase the frequency of heat events. Many adaptation and mitigation studies use spatial distribution of highly vulnerable local populations to inform heat reduction and response plans. However, most available heat vulnerability studies focus on urban areas with high heat intensification by Urban Heat Islands (UHIs). Rural areas encompass different environmental and socioeconomic issues that require alternate analyses of vulnerability. We categorized Nebraska census tracts into four urbanization levels, then conducted factor analyses on each group and captured different patterns of socioeconomic vulnerabilities among resultant Heat Vulnerability Indices (HVIs). While disability is the major component of HVI in two urbanized classes, lower education, and races other than white have higher contributions in HVI for the two rural classes. To account for environmental vulnerability of HVI, we considered different land type combinations for each urban class based on their percentage areas and their differences in heat intensifications. Our results demonstrate different combinations of initial variables in heat vulnerability among urban classes of Nebraska and clustering of high and low heat vulnerable areas within the highest urbanized sections. Less urbanized areas show no spatial clustering of HVI. More studies with separation on urbanization level of residence can give insights into different socioeconomic vulnerability patterns in rural and urban areas, while also identifying changes in environmental variables that better capture heat intensification in rural settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA