Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Carcinog ; 62(5): 598-612, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36727657

RESUMO

Since its initial discovery as a natural isotopologue of dihydrogen oxide (1 H2 O), extensive research has focused on the biophysical, biochemical, and pharmacological effects of deuterated water (2 H2 O [D2 O, also referred to as "heavy water"]). Using a panel of cultured human pancreatic ductal adenocarcinoma (PDAC) cells we have profiled (i) D2 O-induced phenotypic antiproliferative and apoptogenic effects, (ii) redox- and proteotoxicity-directed stress response gene expression, and (iii) phosphoprotein-signaling related to endoplasmic reticulum (ER) and MAP-kinase stress response pathways. Differential array analysis revealed early modulation of stress response gene expression in both BxPC-3 and PANC-1 PDAC cells elicited by D2 O (90%; ≤6 h; upregulated: HMOX1, NOS2, CYP2E1, CRYAB, DDIT3, NFKBIA, PTGS1, SOD2, PTGS2; downregulated: RUNX1, MYC, HSPA8, HSPA1A) confirmed by independent RT-qPCR analysis. Immunoblot-analysis revealed rapid (≤6 h) onset of D2 O-induced MAP-kinase signaling (p-JNK, p-p38) together with ER stress response upregulation (p-eIF2α, ATF4, XBP1s, DDIT3/CHOP). Next, we tested the chemotherapeutic efficacy of D2 O-based drinking water supplementation in an orthotopic PDAC model employing firefly luciferase-expressing BxPC-3-FLuc cells in SCID mice. First, feasibility and time course of systemic deuteration (30% D2 O in drinking water; 21 days) were established using time-resolved whole-body proton magnetic resonance imaging and isotope-ratio mass spectrometry-based plasma (D/H)-analysis. D2 O-supplementation suppressed tumor growth by almost 80% with downregulated expression of PCNA, MYC, RUNX1, and HSP70 while increasing tumor levels of DDIT3/CHOP, HO-1, and p-eIF2α. Taken together, these data demonstrate for the first time that pharmacological induction of systemic deuteration significantly reduces orthotopic tumor burden in a murine PDAC xenograft model.


Assuntos
Carcinoma Ductal Pancreático , Água Potável , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Camundongos SCID , Óxido de Deutério/farmacologia , Óxido de Deutério/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Proliferação de Células , Apoptose , Neoplasias Pancreáticas
2.
J Allergy Clin Immunol ; 150(3): 604-611, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367470

RESUMO

BACKGROUND: The study of pathogenic mechanisms in adult asthma is often marred by a lack of precise information about the natural history of the disease. Children who have persistent wheezing (PW) during the first 6 years of life and whose symptoms start before age 3 years (PW+) are much more likely to have wheezing illnesses due to rhinovirus (RV) in infancy and to have asthma into adult life than are those who do not have PW (PW-). OBJECTIVE: Our aim was to determine whether nasal epithelial cells from PW+ asthmatic adults as compared with cells from PW- asthmatic adults show distinct biomechanistic processes activated by RV exposure. METHODS: Air-liquid interface cultures derived from nasal epithelial cells of 36-year old participants with active asthma with and without a history of PW in childhood (10 PW+ participants and 20 PW- participants) from the Tucson Children's Respiratory Study were challenged with a human RV-A strain (RV-A16) or control, and their RNA was sequenced. RESULTS: A total of 35 differentially expressed genes involved in extracellular remodeling and angiogenesis distinguished the PW+ group from the PW- group at baseline and after RV-A stimulation. Notably, 22 transcriptomic pathways showed PW-by-RV interactions; the pathways were invariably overactivated in PW+ patients, and were involved in Toll-like receptor- and cytokine-mediated responses, remodeling, and angiogenic processes. CONCLUSIONS: Asthmatic adults with a history of persistent wheeze in the first 6 years of life have specific biomolecular alterations in response to RV-A that are not present in patients without such a history. Targeting these mechanisms may slow the progression of asthma in these patients.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Adulto , Asma/diagnóstico , Criança , Pré-Escolar , Células Epiteliais , Humanos , Fenótipo , Sons Respiratórios , Rhinovirus/genética
3.
Mol Carcinog ; 61(6): 603-614, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35417045

RESUMO

Molecularly targeted therapeutics have revolutionized the treatment of BRAFV600E -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E /NRASQ61 vs. BRAFi-resistant A375-BRAFV600E /NRASQ61K ). Among ACT antimalarials tested, mefloquine (MQ) was the only apoptogenic agent causing melanoma cell death at low micromolar concentrations. Comparative gene expression-array analysis (A375-BRAFV600E /NRASQ61 vs. A375-BRAFV600E /NRASQ61K ) revealed that MQ is a dual inducer of endoplasmic reticulum (ER) and redox stress responses that precede MQ-induced loss of viability. ER-trackerTM DPX fluorescence imaging and electron microscopy indicated ER swelling, accompanied by rapid induction of ER stress signaling (phospho-eIF2α, XBP-1s, ATF4). Fluo-4 AM-fluorescence indicated the occurrence of cytosolic calcium overload observable within seconds of MQ exposure. In a bioluminescent murine model employing intracranial injection of A375-Luc2 (BRAFV600E /NRASQ61K ) cells, an oral MQ regimen efficiently antagonized brain tumor growth. Taken together, these data suggest that the clinical antimalarial MQ may be a valid candidate for drug repurposing aiming at chemotherapeutic elimination of malignant melanoma cells, even if metastasized to the brain and BRAFi-resistant.


Assuntos
Antimaláricos , Neoplasias Encefálicas , Melanoma , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , GTP Fosfo-Hidrolases/genética , Humanos , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
4.
J Surg Res ; 233: 297-303, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502262

RESUMO

BACKGROUND: About 1.2 million new cases of colon cancer (CC) and 0.6 million deaths are reported every year, establishing CC as an important contributor to worldwide cancer morbidity and mortality. Although the overall incidence and mortality of CC have declined over the past 3 decades, the number of early-onset colon cancer ([EOCC], patients <50 y old) continues to rise alarmingly. These young patients are often diagnosed at a more advanced stage and tend to have poor survival. Our recently published data showed that the cartilage oligomeric matrix protein (COMP) is overexpressed in early-onset colon cancer patients. COMP is also reported in several cancers to coexpress with epithelial-mesenchymal transition (EMT) transcription factors. Given the role of EMT in cancer metastasis and cell invasion, we assessed the correlation between COMP gene expression and EMT gene expression in CC, and COMP's relationship to patient survival. METHODS: mRNA expression of COMP was compared to that of EMT markers using the UCSC Cancer Genomics Browser. Survival analysis was performed using the UCSC Xena Browser for cancer genomics. RESULTS: Expression analysis revealed coexpression of COMP with the EMT markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP9, and COL1A1. Samples that were more mesenchymal had higher expression levels of COMP and EMT markers, thus suggesting a potential role of COMP in EMT. Patients with increased COMP expression presented with poorer overall survival compared to patients with no change or reduced COMP expression (P = 0.02). CONCLUSIONS: These findings reveal COMP as a potential biomarker for CC especially in more aggressive CC and CC in young patients, with a likely role in EMT during tumor metastasis and invasion, and a contributing factor to patient survival.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , Adenocarcinoma/mortalidade , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Colo/patologia , Neoplasias do Colo/mortalidade , Bases de Dados Factuais/estatística & dados numéricos , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Análise de Sobrevida
5.
Xenotransplantation ; 25(6): e12432, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052287

RESUMO

BACKGROUND: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted. METHODS: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, ß-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing. RESULTS: Oxygen consumption rate normalized to DNA was not significantly different between ages. Membrane integrity was age dependent, and API had the highest percentage of intact cells. API also had the highest glucose-stimulated insulin secretion response during a dynamic insulin secretion assay and had 50-fold higher total insulin content compared to NPI and JPI. NPI and JPI had similar glucose responsiveness, ß-cell percentage, and ß-cell proliferation rate. Transcriptome analysis was consistent with physiological assessments. API transcriptomes were enriched for cellular metabolic and insulin secretory pathways, while NPI exhibited higher expression of genes associated with proliferation. CONCLUSIONS: The oxygen demand, membrane integrity, ß-cell function and proliferation, and transcriptomes of islets from API, JPI, and NPI provide a comprehensive physiological comparison for future studies. These assessments will inform the optimal application of each age of porcine islet to expand the availability of islet transplantation.


Assuntos
Sobrevivência de Enxerto/imunologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Animais Recém-Nascidos , Diabetes Mellitus Experimental/terapia , Rejeição de Enxerto/imunologia , Células Secretoras de Insulina/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/imunologia , Pâncreas/metabolismo , Suínos , Transcriptoma/imunologia , Transplante Heterólogo/métodos
6.
J Surg Res ; 204(1): 251-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27451894

RESUMO

BACKGROUND: The overall incidence of colon cancer (CC) has steadily declined in the last decades but has increased in patients under age 50 y. The etiology of early-onset (EO) CC is not understood. The aim of this study was to elucidate gene expression patterns in EOCC and show its uniqueness compared to late-onset (LO) disease. METHODS: Two cohorts of patients with sporadic CC were identified. Tumors and matching noninvolved tissues from six EOCC patients (<50) and six late-onset colon cancers (LOCC) patients (>65) were obtained from pathology archives. De-paraffinized tissues were macrodissected from FFPE sections, RNA isolated, and used for expression profiling of 770 cancer-related genes representing 13 canonical pathways. RESULTS: Among 770 genes assayed, changes in expression levels of 93 genes were statistically significant between EOCC and matching noninvolved tissues. There were also significant differences in expression levels of 118 genes between LOCC and matching noninvolved tissues. Detailed comparative gene expression analysis between EOCC and LOCC normalized to their matching noninvolved tissues revealed that changes in expression of 88 genes were unique to EOCC using the cutoff criteria of expression levels difference >2 fold and P value <0.01. From these differentially expressed genes specific to EOCC, 28 genes were upregulated and 60 genes downregulated. At the pathway level, RAS, MAPK, WNT, and DNARepair pathways were similarly deregulated in both age groups, whereas PI3K-AKT signaling was more specific to EOCC and cell cycle pathway to LOCC. CONCLUSIONS: These results suggest that sporadic EOCC is characterized by distinct molecular events compared to LOCC.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade
7.
Exp Cell Res ; 319(5): 750-60, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23220213

RESUMO

The CyP40 protein encoded by PPID gene is a member of the peptidyl-prolyl cis-trans isomerase (PPIase) family. PPIases catalyze the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and accelerate the folding of proteins. The CyP40 protein has been shown to possess PPIase activity and, similar to other family members, can bind to the immunosuppressant drug cyclosporin A (CsA). In this study, we created keratinocyte cell lines with CyP40 being stably knocked down using viral particles containing shRNA for CyP40 which knocked down the expression level of CyP40 transcripts by 90-99%. The proliferation rates of the cell lines with silenced CyP40 were decreased compared to the control cells. After UVA irradiation, the rate of apoptosis was found to be significantly lower in CyP40 silenced cell lines than it was in control cells. Moreover, mitochondrial membrane potential (MMP) was found to be less dissipated and mitochondrial permeability transition pore (MPTP) less active in cells with knocked down CyP40 than in control cells after UVA irradiation. Also, less mitochondrial superoxide was detected in the cells with silenced CyP40 compared to control cells after UVA exposure. Moreover, silencing of CyP40 partially modulates expression of key genes involved in mitochondrial pore formation including CyPD, ANTs and VDAC family members. The ability of CyP40 to regulate UV induced apoptosis implicates this protein as a potential target for therapy in cancer cells.


Assuntos
Apoptose/efeitos da radiação , Ciclofilinas/metabolismo , Queratinócitos/patologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Western Blotting , Proliferação de Células/efeitos da radiação , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/genética , Citometria de Fluxo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Proteínas de Transporte da Membrana Mitocondrial/efeitos da radiação , Poro de Transição de Permeabilidade Mitocondrial , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Sci Total Environ ; 914: 169933, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199366

RESUMO

An abundant body of scientific studies and regulatory guidelines substantiates antimicrobial efficacy of freshwater chlorination ensuring drinking water safety in large populations worldwide. In contrast to the purposeful use of chlorination ensuring antimicrobial safety of drinking water, only a limited body of research has addressed the molecular impact of chlorinated drinking water exposure on the gut microbiota. Here, for the first time, we have examined the differential effects of drinking water regimens stratified by chlorination agent [inorganic (HOCl) versus chloramine (TCIC)] on the C57BL/6J murine fecal microbiota. To this end, we exposed C57BL/6J mice to chlorinated drinking water regimens followed by fecal bacterial microbiota analysis at the end of the three-week feeding period employing 16S rRNA sequencing. α-diversity was strongly reduced when comparing chlorinated versus control drinking water groups and community dissimilarities (ß-diversity) were significant between groups even when comparing HOCl and TCIC. We detected significant differences in fecal bacterial composition as a function of drinking water chlorination observable at the phylum and genus levels. Differential abundance analysis of select amplicon sequence variants (ASVs) revealed changes as a function of chlorination exposure [up: Lactobacillus ASV1; Akkermansia muciniphila ASV7; Clostridium ss1 ASV10; down: Ileibacterium valens ASV5; Desulfovibrio ASV11; Lachnospiraceae UCG-006 ASV15]. Given the established complexity of murine and human gastrointestinal microbiota and their role in health and disease, the translational relevance of the chlorination-induced changes documented by us for the first time in the fecal murine microbiota remains to be explored.


Assuntos
Anti-Infecciosos , Água Potável , Microbiota , Camundongos , Humanos , Animais , Água Potável/microbiologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL
9.
JID Innov ; 4(2): 100255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328594

RESUMO

The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1 inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1 bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR analysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. NanoString nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and inflammation-related responses, together with upregulation of immune response pathway gene expression. Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.

10.
Biochim Biophys Acta ; 1822(2): 293-300, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22119597

RESUMO

There have been many reports of mitochondrial DNA (mtDNA) mutations associated with human malignancies. We have observed allelic instability in UV-induced cutaneous tumors at the mt-Tr locus encoding the mitochondrial tRNA for arginine. We examined the effects of somatic alterations at this locus by modeling the change in a uniform nuclear background by generating cybrids harboring allelic variation at mt-Tr. We utilized the naturally occurring mtDNA variation at mt-Tr within the BALB/cJ (BALB) and C57BL/6J (B6) strains of Mus musculus to transfer their mitochondria into a mouse ρ(0) cell line that lacked its own mtDNA. The BALB haplotype containing the mt-Tr 9821insA allele produced significant changes in cellular respiration (resulting in lowered ATP production), but increased rates of cellular proliferation in cybrid cells. Furthermore, the mtDNA genotype associated with UV-induced tumors endowed the cybrid cells with a phenotype of resistance to UV-induced apoptosis and enhanced migration and invasion capabilities. These studies support a role for mtDNA changes in cancer.


Assuntos
Desequilíbrio Alélico , Transformação Celular Neoplásica/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Alelos , Animais , Antioxidantes/metabolismo , Apoptose/genética , Arginina/genética , Arginina/metabolismo , Linhagem Celular , Movimento Celular/genética , Núcleo Celular/genética , Proliferação de Células , Respiração Celular/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Loci Gênicos , Variação Genética , Haplótipos/genética , Células Híbridas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mutação/genética , Invasividade Neoplásica/genética , Fenótipo , RNA de Transferência/genética
11.
Exp Cell Res ; 318(17): 2215-25, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705584

RESUMO

We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.


Assuntos
Núcleo Celular/genética , Transformação Celular Neoplásica/patologia , DNA Mitocondrial/genética , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/patologia , NF-kappa B/metabolismo , Neoplasias Cutâneas/patologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Células Cultivadas , Dipeptídeos/farmacologia , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mutação/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Fenótipo , Inibidores de Proteases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/genética , Sulfonas/farmacologia
12.
Photochem Photobiol ; 99(2): 835-843, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35841216

RESUMO

Freshwater sanitation and disinfection using a variety of chemical entities as chlorination agents is an essential public health intervention ensuring water safety for populations at a global scale. Recently, we have published our observation that the small molecule oxidant, innate immune factor and chlorination agent HOCl antagonize inflammation and photocarcinogenesis in murine skin exposed topically to environmentally relevant concentrations of HOCl. Chlorinated isocyanuric acid derivatives (including the chloramines trichloroisocyanuric acid [TCIC] and dichloroisocyanuric acid [DCIC]) are used worldwide as alternate chlorination agents serving as HOCl precursor and stabilizer compounds ensuring sustained release in aqueous environments including public water systems, recreational pools and residential hot tubs. Here, for the first time, we have examined the cutaneous TCIC-induced transcriptional stress response (in both an organotypic epidermal model and in AP-1 luciferase reporter SKH-1 mouse skin), also examining molecular consequences of subsequent treatment with solar ultraviolet (UV) radiation. Taken together, our findings indicate that cutaneous delivery of TCIC significantly enhances UV-induced inflammation (as profiled at the gene expression level), suggesting a heretofore unrecognized potential to exacerbate UV-induced functional and structural cutaneous changes. These observations deserve further molecular investigations in the context of TCIC-based freshwater disinfection with health implications for populations worldwide.


Assuntos
Desinfetantes , Água Potável , Piscinas , Poluentes Químicos da Água , Purificação da Água , Animais , Camundongos , Fator de Transcrição AP-1 , Camundongos Transgênicos , Halogenação , Desinfecção , Expressão Gênica
13.
Photochem Photobiol ; 99(2): 826-834, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109156

RESUMO

Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.


Assuntos
Fármacos Fotossensibilizantes , Aldeído Pirúvico , Humanos , Fármacos Fotossensibilizantes/farmacologia , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Estresse Proteotóxico , Raios Ultravioleta , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Expressão Gênica , Glicólise
14.
Cell Biochem Funct ; 30(8): 687-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22692860

RESUMO

CYR61 is one of the six proteins of the CCN family of proteins known to play diverse roles in angiogenesis, cellular proliferation, survival, migration and wound healing. However, the specific function of CYR61 in cancer is unclear, and the literature remains controversial. We used quantitative real-time PCR to establish the expression profile of CYR61 and integrin α(V)ß5 in three non-small cell lung cancer, five colorectal cancer, one breast cancer and one oesophageal squamous carcinoma cell lines. We showed that the levels of CYR61 were significantly increased in oesophageal squamous carcinoma cell line along with the enhanced levels of α(V)ß5 integrin. Further, we investigated whether tumour cell-secreted CYR61 can facilitate cell migration by interacting with the α(V)ß5 integrin. Using tumour cell lines with low, intermediate and high CYR61 expression and their isogenic variants as a cellular model, we determined that integrin α(V)ß5 expressed on these tumour cells is required for cell migration. Moreover, we showed that the modulation of expression levels of CYR61 in these cancer cells affected their capacity for migration. These results represent an advance to the understanding of the role of CYR61 and α(V)ß5 integrin as proteins that cooperate to mediate cancer cell migration.


Assuntos
Movimento Celular/genética , Proteína Rica em Cisteína 61/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Vitronectina/genética , Western Blotting , Linhagem Celular Tumoral , Proteína Rica em Cisteína 61/metabolismo , Células HCT116 , Células HT29 , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Receptores de Vitronectina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Invest Dermatol ; 142(5): 1456-1465.e1, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34687745

RESUMO

BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 vs. BRAFi-resistant A375-BRAFV600E/NRASQ61K), we show that BRAFi (vemurafenib) treatment selectively targets BRAFV600E/NRASQ61K cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo. First, NanoString nCounter transcriptomic analysis identified the upregulation of specific gene expression networks (EMT and EMT to metastasis) as a function of NRASQ61K status. Strikingly, BRAFi treatment further exacerbated the upregulation of genes promoting EMT in BRAFV600E/NRASQ61K cells (with opposing downregulation of EMT-driver genes in the BRAFV600E/NRASQ61 genotype) as detected by EMT-focused RT2 Profiler qPCR array analysis. In BRAFV600E/NRASQ61K cells, BRAFi treatment enhanced proliferation and invasiveness, together with activation of phosphorylated protein kinase B (Ser473), with opposing phenotypic effects observable in BRAFV600E/NRASQ61 cells displaying downregulation of phosphorylated protein kinase B and phosphorylated extracellular signal-regulated kinase 1/2. In a SCID mouse bioluminescent melanoma metastasis model, BRAFi treatment enhanced lung tumor burden imposed by BRAFV600E/NRASQ61K cells while blocking BRAFV600E/NRASQ61 metastasis. These preclinical data document the BRAFi-driven enhancement of tumorigenesis and metastasis in BRAFi-resistant human BRAFV600E/NRASQ61K melanoma, a finding with potential clinical implications for patients with NRAS-driven BRAFi-resistant tumors receiving BRAFi treatment.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
16.
Front Oncol ; 12: 887220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574306

RESUMO

A multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic (biological) factors are important determinants of skin health outcomes. Here, we review the role of hypochlorous acid (HOCl) as an emerging component of the skin exposome serving molecular functions as an innate immune factor, environmental toxicant, and topical chemopreventive agent targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-; hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase (MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater processing on a global scale, both in the context of drinking water safety and recreational freshwater use. Physicochemical properties (including redox potential and photon absorptivity) determine chemical reactivity of HOCl towards select biochemical targets [i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory use. Recent studies have explored the interaction between solar UV and HOCl-related environmental co-exposures identifying a heretofore unrecognized photo-chemopreventive activity of topical HOCl and chlorination stress that blocks tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a finding with potential implications for the prevention of human nonmelanoma skin photocarcinogenesis.

17.
Redox Biol ; 39: 101838, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360689

RESUMO

Glyoxalase 1 (encoded by GLO1) is a glutathione-dependent enzyme detoxifying the glycolytic byproduct methylglyoxal (MG), an oncometabolite involved in metabolic reprogramming. Recently, we have demonstrated that GLO1 is overexpressed in human malignant melanoma cells and patient tumors and substantiated a novel role of GLO1 as a molecular determinant of invasion and metastasis in melanoma. Here, employing NanoString™ gene expression profiling (nCounter™ 'PanCancer Progression Panel'), we report that CRISPR/Cas 9-based GLO1 deletion from human A375 malignant melanoma cells alters glucose metabolism and redox homeostasis, observable together with acceleration of tumorigenesis. Nanostring™ analysis identified TXNIP (encoding thioredoxin-interacting protein), a master regulator of cellular energy metabolism and redox homeostasis, displaying the most pronounced expression change in response to GLO1 elimination, confirmed by RT-qPCR and immunoblot analysis. TXNIP was also upregulated in CRISPR/Cas9-engineered DU145 prostate carcinoma cells lacking GLO1, and treatment with MG or a pharmacological GLO1 inhibitor (TLSC702) mimicked GLO1_KO status, suggesting that GLO1 controls TXNIP expression through regulation of MG. GLO1_KO status was characterized by (i) altered oxidative stress response gene expression, (ii) attenuation of glucose uptake and metabolism with downregulation of gene expression (GLUT1, GFAT1, GFAT2, LDHA) and depletion of related key metabolites (glucose-6-phosphate, UDP-N-acetylglucosamine), and (iii) immune checkpoint modulation (PDL1). While confirming our earlier finding that GLO1 deletion limits invasion and metastasis with modulation of EMT-related genes (e.g. TGFBI, MMP9, ANGPTL4, TLR4, SERPINF1), we observed that GLO1_KO melanoma cells displayed a shortened population doubling time, cell cycle alteration with increased M-phase population, and enhanced anchorage-independent growth, a phenotype supported by expression analysis (CXCL8, CD24, IL1A, CDKN1A). Concordantly, an accelerated growth rate of GLO1_KO tumors, accompanied by TXNIP overexpression and metabolic reprogramming, was observable in a SCID mouse melanoma xenograft model, demonstrating that A375 melanoma tumor growth and metastasis can be dysregulated in opposing ways as a consequence of GLO1 elimination.


Assuntos
Lactoilglutationa Liase , Melanoma , Animais , Proteínas de Transporte , Genômica , Glucose , Homeostase , Humanos , Lactoilglutationa Liase/genética , Masculino , Melanoma/genética , Camundongos , Camundongos SCID , Oxirredução , Tiorredoxinas
18.
Cancers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546433

RESUMO

There are two stable isotopes of hydrogen, protium (1H) and deuterium (2H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (2H)-stress on cancer cells remain largely unexplored. We have examined the anti-proliferative and apoptogenic effects of deuterium oxide (D2O; 'heavy water') together with stress response gene expression profiling in panels of malignant melanoma (A375V600E, A375NRAS, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts. Moreover, we have examined the efficacy of D2O-based pharmacological intervention in murine models of human melanoma tumor growth and metastasis. D2O-induction of apoptosis was substantiated by AV-PI flow cytometry, immunodetection of PARP-1, and pro-caspase 3 cleavage, and rescue by pan-caspase inhibition. Differential array analysis revealed early modulation of stress response gene expression in both A375 melanoma and PANC-1 adenocarcinoma cells elicited by D2O (90%; ≤6 h) (upregulated: CDKN1A, DDIT3, EGR1, GADD45A, HMOX1, NFKBIA, or SOD2 (up to 9-fold; p < 0.01)) confirmed by independent RT-qPCR analysis. Immunoblot analysis revealed rapid onset of D2O-induced stress response phospho-protein activation (p-ERK, p-JNK, p-eIF2α, or p-H2AX) or attenuation (p-AKT). Feasibility of D2O-based chemotherapeutic intervention (drinking water (30% w/w)) was demonstrated in a severe combined immunodeficiency (SCID) mouse melanoma metastasis model using luciferase-expressing A375-Luc2 cells. Lung tumor burden (visualized by bioluminescence imaging) was attenuated by D2O, and inhibition of invasiveness was also confirmed in an in vitro Matrigel transwell invasion assay. D2O supplementation also suppressed tumor growth in a murine xenograft model of human melanoma, and median survival was significantly increased without causing adverse effects. These data demonstrate for the first time that systemic D2O administration impairs growth and metastasis of malignant melanoma through the pharmacological induction of deuterium (2H)-stress.

19.
bioRxiv ; 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282415

RESUMO

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses. First, HCoV-NL63 coronavirus inactivation by sUV-exposure was confirmed employing (i) viral plaque assays, (ii) RT-qPCR detection of viral genome replication, and (iii) infection-induced stress response gene expression array analysis. Next, a detailed dose-response relationship of SARS-CoV-2 coronavirus inactivation by sUV was elucidated, suggesting a half maximal suppression of viral infectivity at low sUV doses. Likewise, extended sUV exposure of SARS-CoV-2 blocked cellular infection as revealed by plaque assay and stress response gene expression array analysis. Moreover, comparative (HCoV-NL63 versus SARS-CoV-2) single gene expression analysis by RT-qPCR confirmed that sUV exposure blocks coronavirus-induced redox, inflammatory, and proteotoxic stress responses. Based on our findings, we estimate that solar ground level full spectrum UV light impairs coronavirus infectivity at environmentally relevant doses. Given the urgency and global scale of the unfolding SARS-CoV-2 pandemic, these prototype data suggest feasibility of solar UV-induced viral inactivation, an observation deserving further molecular exploration in more relevant exposure models.

20.
J Photochem Photobiol B ; 224: 112319, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34598020

RESUMO

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses. First, HCoV-NL63 coronavirus inactivation by sUV-exposure was confirmed employing (i) viral plaque assays, (ii) RT-qPCR detection of viral genome replication, and (iii) infection-induced stress response gene expression array analysis. Next, a detailed dose-response relationship of SARS-CoV-2 coronavirus inactivation by sUV was elucidated, suggesting a half maximal suppression of viral infectivity at low sUV doses. Likewise, extended sUV exposure of SARS-CoV-2 blocked cellular infection as revealed by plaque assay and stress response gene expression array analysis. Moreover, comparative (HCoV-NL63 versus SARS-CoV-2) single gene expression analysis by RT-qPCR confirmed that sUV exposure blocks coronavirus-induced redox, inflammatory, and proteotoxic stress responses. Based on our findings, we estimate that solar ground level full spectrum UV light impairs coronavirus infectivity at environmentally relevant doses. Given the urgency and global scale of the unfolding SARS-CoV-2 pandemic, these prototype data suggest feasibility of solar UV-induced viral inactivation, an observation deserving further molecular exploration in more relevant exposure models.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavirus Humano NL63/efeitos da radiação , Infecções Respiratórias/prevenção & controle , SARS-CoV-2/efeitos da radiação , Luz Solar , Raios Ultravioleta , Animais , Linhagem Celular , Chlorocebus aethiops , Coronavirus Humano NL63/fisiologia , Células Epiteliais/virologia , Genoma Viral/efeitos da radiação , Humanos , SARS-CoV-2/fisiologia , Transcriptoma/efeitos da radiação , Ensaio de Placa Viral , Inativação de Vírus/efeitos da radiação , Replicação Viral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA