Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Neuroimage ; 296: 120666, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830440

RESUMO

Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.


Assuntos
Membrana Eritrocítica , Imageamento por Ressonância Magnética , Lipídeos de Membrana , Bainha de Mielina , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Lipídeos de Membrana/química , Liofilização , Eritrócitos/metabolismo
2.
Magn Reson Med ; 91(3): 896-910, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755319

RESUMO

PURPOSE: To develop a 3D phase modulated UTE adiabatic T1ρ (PM-UTE-AdiabT1ρ ) sequence for whole knee joint mapping on a clinical 3 T scanner. METHODS: This new sequence includes six major features: (1) a magnetization reset module, (2) a train of adiabatic full passage pulses for spin locking, (3) a phase modulation scheme (i.e., RF cycling pair), (4) a fat saturation module, (5) a variable flip angle scheme, and (6) a 3D UTE Cones sequence for data acquisition. A simple exponential fitting was used for T1ρ quantification. Phantom studies were performed to investigate PM-UTE-AdiabT1ρ 's sensitivity to compositional changes and reproducibility as well as its correlation with continuous wave-T1ρ measurement. The PM-UTE-AdiabT1ρ technique was then applied to five ex vivo and five in vivo normal knees to measure T1ρ values of femoral cartilage, meniscus, posterior cruciate ligament, anterior cruciate ligament, patellar tendon, and muscle. RESULTS: The phantom study demonstrated PM-UTE-AdiabT1ρ 's high sensitivity to compositional changes, its high reproducibility, and its strong linear correlation with continuous wave-T1ρ measurement. The ex vivo and in vivo knee studies demonstrated average T1ρ values of 105.6 ± 8.4 and 77.9 ± 3.9 ms for the femoral cartilage, 39.2 ± 5.1 and 30.1 ± 2.2 ms for the meniscus, 51.6 ± 5.3 and 29.2 ± 2.4 ms for the posterior cruciate ligament, 79.0 ± 9.3 and 52.0 ± 3.1 ms for the anterior cruciate ligament, 19.8 ± 4.5 and 17.0 ± 1.8 ms for the patellar tendon, and 91.1 ± 8.8 and 57.6 ± 2.8 ms for the muscle, respectively. CONCLUSION: The 3D PM-UTE-AdiabT1ρ sequence allows volumetric T1ρ assessment for both short and long T2 tissues in the knee joint on a clinical 3 T scanner.


Assuntos
Menisco , Ligamento Patelar , Reprodutibilidade dos Testes , Articulação do Joelho/diagnóstico por imagem , Ligamento Cruzado Anterior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
NMR Biomed ; 37(1): e5035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721094

RESUMO

The aim of the current study was to investigate the feasibility of three-dimensional ultrashort echo time quantitative susceptibility mapping (3D UTE-QSM) for the assessment of gadolinium (Gd) deposition in cortical bone. To this end, 40 tibial bovine cortical bone specimens were divided into five groups then soaked in phosphate-buffered saline (PBS) solutions with five different Gd concentrations of 0, 0.4, 0.8, 1.2, and 1.6 mmol/L for 48 h. Additionally, eight rabbits were randomly allocated into three groups, consisting of a normal-dose macrocyclic gadolinium-based contrast agent (GBCA) group (n = 3), a high-dose macrocyclic GBCA group (n = 3), and a control group (n = 2). All bovine and rabbit tibial bone samples underwent magnetic resonance imaging (MRI) on a 3-T clinical MR system. A 3D UTE-Cones sequence was utilized to acquire images with five different echo times (i.e., 0.032, 0.2, 0.4, 0.8, and 1.2 ms). The UTE images were subsequently processed with the morphology-enabled dipole inversion algorithm to yield a susceptibility map. The average susceptibility was calculated in three regions of interest in the middle of each specimen, and the Pearson's correlation between the estimated susceptibility and Gd concentration was calculated. The bone samples soaked in PBS with higher Gd concentrations exhibited elevated susceptibility values. A mean susceptibility value of -2.47 ± 0.23 ppm was observed for bovine bone soaked in regular PBS, while the mean QSM value increased to -1.75 ± 0.24 ppm for bone soaked in PBS with the highest Gd concentration of 1.6 mmol/L. A strong positive correlation was observed between Gd concentrations and QSM values. The mean susceptibility values of rabbit tibial specimens in the control group, normal-dose GBCA group, and high-dose GBCA group were -4.11 ± 1.52, -3.85 ± 1.33, and -3.39 ± 1.35 ppm, respectively. In conclusion, a significant linear correlation between Gd in cortical bone and QSM values was observed. The preliminary results suggest that 3D UTE-QSM may provide sensitive noninvasive assessment of Gd deposition in cortical bone.


Assuntos
Gadolínio , Imageamento Tridimensional , Animais , Bovinos , Coelhos , Osso e Ossos/diagnóstico por imagem , Meios de Contraste , Osso Cortical/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos
4.
NMR Biomed ; 37(1): e5040, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740595

RESUMO

The purpose of this study is to investigate the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) techniques (T1 and magnetization transfer [MT] modeling) for imaging of the Achilles tendons and entheses in patients with psoriatic arthritis (PsA) compared with asymptomatic volunteers. The heels of twenty-six PsA patients (age 59 ± 15 years, 41% female) and twenty-seven asymptomatic volunteers (age 33 ± 11 years, 47% female) were scanned in the sagittal plane with UTE-T1 and UTE-MT modeling sequences on a 3-T clinical scanner. UTE-T1 and macromolecular proton fraction (MMF; the main outcome of MT modeling) were calculated in the tensile portions of the Achilles tendon and at the enthesis (close to the calcaneus bone). Mann-Whitney-U tests were used to examine statistically significant differences between the two cohorts. UTE-T1 in the entheses was significantly higher for the PsA group compared with the asymptomatic group (967 ± 145 vs. 872 ± 133 ms, p < 0.01). UTE-T1 in the tendons was also significantly higher for the PsA group (950 ± 145 vs. 850 ± 138 ms, p < 0.01). MMF in the entheses was significantly lower in the PsA group compared with the asymptomatic group (15% ± 3% vs. 18% ± 3%, p < 0.01). MMF in the tendons was also significantly lower in the PsA group compared with the asymptomatic group (17% ± 4% vs. 20% ± 5%, p < 0.01). Percentage differences in MMF between the asymptomatic and PsA groups (-16.6% and -15.0% for the enthesis and tendon, respectively) were higher than the T1 differences (10.8% and 11.7% for the enthesis and tendon, respectively). The results suggest higher T1 and lower MMF in the Achilles tendons and entheses in PsA patients compared with the asymptomatic group. This study highlights the potential of UTE-T1 and UTE-MT modeling for quantitative evaluation of entheses and tendons in PsA patients.


Assuntos
Tendão do Calcâneo , Artrite Psoriásica , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Masculino , Tendão do Calcâneo/diagnóstico por imagem , Artrite Psoriásica/diagnóstico por imagem , Artrite Psoriásica/patologia , Imageamento por Ressonância Magnética/métodos , Prótons
5.
Semin Musculoskelet Radiol ; 28(1): 62-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330971

RESUMO

Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.


Assuntos
Osso e Ossos , Imageamento por Ressonância Magnética , Humanos , Osso e Ossos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Água/química , Minerais
6.
NMR Biomed ; : e4939, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965076

RESUMO

The purpose of the current study was to investigate the effects of B0 and linear eddy currents on ultrashort echo time double echo steady state (UTE-DESS) imaging and to determine whether eddy current correction (ECC) effectively resolves imaging artifacts caused by eddy currents. 3D UTE-DESS sequences based on either projection radial or spiral cones trajectories were implemented on a 3-T clinical MR scanner. An off-isocentered thin-slice excitation approach was used to measure eddy currents. The measurements were repeated four times using two sets of tested gradient waveforms with opposite polarities and two different slice locations to measure B0 and linear eddy currents simultaneously. Computer simulation was performed to investigate the eddy current effect. Finally, a phantom experiment, an ex vivo experiment with human synovium and ankle samples, and an in vivo experiment with human knee joints, were performed to demonstrate the effects of eddy currents and ECC in UTE-DESS imaging. In a computer simulation, the two echoes (S+ and S-) in UTE-DESS imaging exhibited strong distortion at different orientations in the presence of B0 and linear eddy currents, resulting in both image degradation as well as misalignment of pixel location between the two echoes. The same phenomenon was observed in the phantom, ex vivo, and in vivo experiments, where the presence of eddy currents degraded S+, S-, echo subtraction images, and T2 maps. The implementation of ECC dramatically improved both the image quality and image registration between the S+ and S- echoes. It was concluded that ECC is crucial for reliable morphological and quantitative UTE-DESS imaging.

7.
Skeletal Radiol ; 52(11): 2149-2157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36607355

RESUMO

Novel compositional magnetic resonance (MR) imaging techniques have allowed for both the qualitative and quantitative assessments of tissue changes in osteoarthritis, many of which are difficult to characterize on conventional MR imaging. Ultrashort echo time (UTE) and zero echo time (ZTE) MR imaging have not been broadly implemented clinically but have several applications that leverage contrast mechanisms for morphologic evaluation of bone and soft tissue, as well as biochemical assessment in various stages of osteoarthritis progression. Many of the musculoskeletal tissues implicated in the initiation and progression of osteoarthritis are short T2 in nature, appearing dark as signal has already decayed to its minimum when image sampling starts. UTE and ZTE MR imaging allow for the qualitative and quantitative assessments of these short T2 tissues (bone, tendon, calcified cartilage, meniscus, and ligament) with both structural and functional reference standards described in the literature [1-3]. This review will describe applications of UTE and ZTE MR imaging in musculoskeletal tissues focusing on its role in knee osteoarthritis. While the review will address tissue-specific applications of these sequences, it is understood that osteoarthritis is a whole joint process with involvement and interdependence of all tissues. KEY POINTS: • UTE MR imaging allows for the qualitative and quantitative evaluation of short T2 tissues (bone, calcified cartilage, and meniscus), enabling identification of both early degenerative changes and subclinical injuries that may predispose to osteoarthritis. • ZTE MR imaging allows for the detection of signal from bone, which has some of the shortest T2 values, and generates tissue contrast similar to CT, potentially obviating the need for CT in the assessment of osseous features of osteoarthritis.


Assuntos
Interpretação de Imagem Assistida por Computador , Osteoartrite do Joelho , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
9.
Magn Reson Med ; 88(3): 1156-1169, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613378

RESUMO

PURPOSE: To develop a new myelin water imaging (MWI) technique using a short-TR adiabatic inversion-recovery (STAIR) sequence on a clinical 3T MR scanner. METHODS: Myelin water (MW) in the brain has both a much shorter T1 and a much shorter T2 * than intracellular/extracellular water. A STAIR sequence with a short TR was designed to efficiently suppress long T1 signals from intracellular/extracellular water, and therefore allow selective imaging of MW, which has a much shorter T1 . Numerical simulation and phantom studies were performed to investigate the effectiveness of long T1 signal suppression. TheT2 * in white matter (WM) was measured with STAIR and compared with T2 * measured with a conventional gradient recall echo in in vivo study. Four healthy volunteers and 4 patients with multiple sclerosis were recruited for qualitative and quantitative MWI. Apparent MW fraction was generated to compare MW in normal WM in volunteers to MW in lesions in patients with multiple sclerosis. RESULTS: Both simulation and phantom studies showed that when TR was sufficiently short (eg, 250 ms), the STAIR sequence effectively suppressed long T1 signals from tissues with a broad range of T1 s using a single TR/TI combination. The volunteer study showed a short T2 * of 9.5 ± 1.7 ms in WM, which is similar to reported values for MW. Lesions in patients with multiple sclerosis showed a significantly lower apparent MW fraction (4.5% ± 1.0%) compared with that of normal WM (9.2% ± 1.5%) in healthy volunteers (p < 0.05). CONCLUSIONS: The STAIR sequence provides selective MWI in brain and can quantify reductions in MW content in patients with multiple sclerosis.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Água , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
10.
J Magn Reson Imaging ; 55(6): 1597-1612, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34962335

RESUMO

This review article summarizes recent technical developments in ultrashort echo time (UTE) magnetic resonance imaging of musculoskeletal (MSK) tissues with short-T2 relaxation times. A series of contrast mechanisms are discussed for high-contrast morphological imaging of short-T2 MSK tissues including the osteochondral junction, menisci, ligaments, tendons, and bone. Quantitative UTE mapping of T1, T2*, T1ρ, adiabatic T1ρ, magnetization transfer ratio, MT modeling of macromolecular proton fraction, quantitative susceptibility mapping, and water content is also introduced. Met and unmet needs in MSK imaging are discussed. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 3.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Substâncias Macromoleculares , Imageamento por Ressonância Magnética/métodos , Cintilografia , Tendões
11.
Eur Radiol ; 32(9): 6178-6186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35357540

RESUMO

OBJECTIVES: To evaluate articular cartilage degeneration using quantitative three-dimensional ultrashort-echo-time cones adiabatic-T1ρ (3D UTE-Cones-AdiabT1ρ) imaging. METHODS: Sixty-six human subjects were recruited for this study. Kellgren-Lawrence (KL) grade and Whole-Organ Magnetic-Resonance-Imaging Score (WORMS) were evaluated by two musculoskeletal radiologists. The human subjects were categorized into three groups, namely normal controls (KL0), doubtful-minimal osteoarthritis (OA) (KL1-2), and moderate-severe OA (KL3-4). WORMS were regrouped to encompass the extent of lesions and the depth of lesions. The UTE-Cones-AdiabT1ρ values were obtained using 3D UTE-Cones data acquisitions preceded by seven paired adiabatic full passage pulses that corresponded to seven spin-locking times (TSLs) of 0, 12, 24, 36, 48, 72, and 96 ms. The performance of the UTE-Cones-AdiabT1ρ technique in evaluating the degeneration of knee cartilage was assessed via the ANOVA comparisons with subregional analysis and Spearman's correlation coefficient as well as the receiver-operating-characteristic (ROC) curve. RESULTS: UTE-Cones-AdiabT1ρ showed significant positive correlations with KL grade (r = 0.15, p < 0.05) and WORMS (r = 0.57, p < 0.05). Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the cartilage. The differences in UTE-Cones-AdiabT1ρ values among different extent and depth groups of cartilage lesions were all statistically significant (p < 0.05). Subregional analyses showed that the correlations between UTE-Cones-AdiabT1ρ and WORMS varied with the location of cartilage. The AUC value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration (WORMS=1) was 0.8. The diagnostic threshold value of UTE-Cones-AdiabT1ρ for mild cartilage degeneration was 39.4 ms with 80.8% sensitivity. CONCLUSIONS: The 3D UTE-Cones-AdiabT1ρ sequence can be useful in quantitative evaluation of articular cartilage degeneration. KEY POINTS: • The 3D UTE-Cones-AdiabT1ρ sequence can distinguish mild cartilage degeneration from normal cartilage with a diagnostic threshold value of 39.4 ms for mild cartilage degeneration with 80.8% sensitivity. • Higher UTE-Cones-AdiabT1ρ values were observed in both larger and deeper lesions in the articular cartilage. • UTE-Cones-AdiabT1ρ is a promising biomarker for quantitative evaluation of early cartilage degeneration.


Assuntos
Cartilagem Articular , Cartilagem Articular/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Articulação do Joelho , Imageamento por Ressonância Magnética/métodos
12.
Sensors (Basel) ; 22(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236557

RESUMO

In this study, the feasibility of accelerated quantitative Ultrashort Echo Time Cones (qUTE-Cones) imaging with compressed sensing (CS) reconstruction is investigated. qUTE-Cones sequences for variable flip angle-based UTE T1 mapping, UTE adiabatic T1ρ mapping, and UTE quantitative magnetization transfer modeling of macromolecular fraction (MMF) were implemented on a clinical 3T MR system. Twenty healthy volunteers were recruited and underwent whole-knee MRI using qUTE-Cones sequences. The k-space data were retrospectively undersampled with different undersampling rates. The undersampled qUTE-Cones data were reconstructed using both zero-filling and CS reconstruction. Using CS-reconstructed UTE images, various parameters were estimated in 10 different regions of interests (ROIs) in tendons, ligaments, menisci, and cartilage. Structural similarity, percentage error, and Pearson's correlation were calculated to assess the performance. Dramatically reduced streaking artifacts and improved SSIM were observed in UTE images from CS reconstruction. A mean SSIM of ~0.90 was achieved for all CS-reconstructed images. Percentage errors between fully sampled and undersampled CS-reconstructed images were below 5% for up to 50% undersampling (i.e., 2× acceleration). High linear correlation was observed (>0.95) for all qUTE parameters estimated in all subjects. CS-based reconstruction combined with efficient Cones trajectory is expected to achieve a clinically feasible scan time for qUTE imaging.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Tendões
13.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457284

RESUMO

A relationship between an acidic pH in the joints, osteoarthritis (OA), and pain has been previously demonstrated. Acidosis Chemical Exchange Saturation Transfer (acidoCEST) indirectly measures the extracellular pH through the assessment of the exchange of protons between amide groups on iodinated contrast agents and bulk water. It is possible to estimate the extracellular pH in the osteoarthritic joint using acidoCEST MRI. However, conventional MR sequences cannot image deep layers of cartilage, meniscus, ligaments, and other musculoskeletal tissues that present with short echo time and fast signal decay. Ultrashort echo time (UTE) MRI, on the other hand, has been used successfully to image those joint tissues. Here, our goal is to compare the pH measured in the knee joints of volunteers without OA and patients with severe OA using acidoCEST-UTE MRI. Patients without knee OA and patients with severe OA were examined using acidoCEST-UTE MRI and the mean pH of cartilage, meniscus, and fluid was calculated. Additionally, the relationship between the pH measurements and the Knee Injury and Osteoarthritis Outcome Score (KOOS) was investigated. AcidoCEST-UTE MRI can detect significant differences in the pH of knee cartilage, meniscus, and fluid between joints without and with OA, with OA showing lower pH values. In addition, symptoms and knee-joint function become worse at lower pH measurements.


Assuntos
Menisco , Osteoartrite do Joelho , Cartilagem , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Menisco/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem
14.
Magn Reson Med ; 85(6): 3290-3298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404142

RESUMO

PURPOSE: To describe a new method for accurate T1 measurement of cortical bone that fits the data sets of both 3D UTE actual flip angle imaging (UTE-AFI) and UTE with a single TR (UTE-STR) simultaneously (UTE-AFI-STR). THEORY AND METHODS: To make both the constant values and longitudinal mapping functions in the signal equations for UTE-AFI and UTE-STR identical, the same RF pulses and flip angles were used. Therefore, there were three unknowns in the three equations. This was sufficient to fit the data. Numerical simulation as well as ex vivo and in vivo cortical bone studies were performed to validate the T1 measurement accuracy with the UTE-AFI-STR method. The original UTE-AFI variable TR (VTR) (ie, combined UTE-AFI and UTE with VTR) and simultaneous fitting (sf) of UTE-AFI and UTE-VTR (sf-UTE-AFI-VTR) methods were performed for comparison. RESULTS: The numerical simulation study showed that the UTE-AFI-STR method provided accurate value of T1 when the SNR of the UTE-STR image was higher than 40. The ex vivo study showed that the UTE-AFI-STR method measured the T1 of cortical bone accurately, with difference ratios ranging from -5.0% to 0.4%. The in vivo study showed a mean T1 of 246 ms with the UTE-AFI-STR method, and mean difference ratios of 2.4% and 5.0%, respectively, compared with the other two methods. CONCLUSION: The 3D UTE-AFI-STR method provides accurate mapping of the T1 of cortical bone with improved time efficiency compared with the UTE-AFI-VTR/sf-UTE-AFI-VTR methods.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Osso e Ossos , Simulação por Computador , Osso Cortical/diagnóstico por imagem , Imagens de Fantasmas
15.
Magn Reson Med ; 86(2): 881-892, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755258

RESUMO

PURPOSE: In this study, we aimed to develop a new technique, ultrashort echo time Cones double echo steady state (UTE-Cones-DESS), for highly efficient morphological imaging of musculoskeletal tissues with short T2 s. We also proposed a novel, single-point Dixon (spDixon)-based approach for fat suppression. METHODS: The UTE-Cones-DESS sequence was implemented on a 3T MR system. It uses a short radiofrequency (RF) pulse followed by a pair of balanced spiral-out and spiral-in readout gradients separated by an unbalanced spoiling gradient in-between. The readout gradients are applied immediately before or after the RF pulses to achieve a UTE image (S+ ) and a spin/stimulated echo image (S- ). Weighted echo subtraction between S+ and S- was performed to achieve high contrast specific to short T2 tissues, and spDixon was applied to suppress fat by using the intrinsic complex signal of S+ and S- . Six healthy volunteers and five patients with osteoarthritis were recruited for whole-knee imaging. Additionally, two healthy volunteers were recruited for lower leg imaging. RESULTS: The UTE-Cones-DESS sequence allows fast volumetric imaging of musculoskeletal tissues with excellent image contrast for the osteochondral junction, tendons, menisci, and ligaments in the knee joint as well as cortical bone and aponeurosis in the lower leg within 5 min. spDixon yields efficient fat suppression in both S+ and S- images without requiring any additional acquisitions or preparation pulses. CONCLUSION: The rapid UTE-Cones-DESS sequence can be used for high contrast morphological imaging of short T2 tissues, providing a new tool to assess their association with musculoskeletal disorders.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Tendões
16.
NMR Biomed ; 34(8): e4559, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021649

RESUMO

While conventional MRI sequences cannot visualize tissues from the osteochondral junction (OCJ) due to these tissues' short transverse T2 /T2 * relaxations, ultrashort echo time (UTE) sequences can overcome this limitation. A 2D UTE sequence with a dual adiabatic inversion recovery preparation (DIR-UTE) for selective imaging of short T2 tissues with high contrast has previously been developed, but high sensitivity to eddy currents and aliased out-of-slice excitation make it difficult to image the thin layer of the OCJ in vivo. Here, we combine the DIR scheme with a 3D UTE cones sequence for volumetric imaging of OCJ tissues in vivo, aiming to generate higher OCJ contrast compared with a recently developed single IR-prepared UTE sequence with a fat saturation module (IR-FS-UTE). All sequences were implemented on a 3-T clinical scanner. The DIR-UTE cones sequence combined a 3D UTE cones sequence with two narrow-band adiabatic IR preparation pulses centered on water and fat spectrum frequencies, respectively. The 3D DIR-UTE cones sequence was first applied to a phantom, then to the knees of four healthy volunteers and four patients diagnosed with osteoarthritis and compared with the IR-FS-UTE sequence. In both phantom and volunteer studies, the proposed DIR-UTE cones sequence showed much higher contrast for OCJ imaging than the IR-FS-UTE sequence did. The 3D DIR-UTE cones sequence showed a significantly higher contrast-to-noise ratio between the OCJ and subchondral bone fat (mean, standard deviation [SD]: 25.7 ± 2.3) and between the OCJ and superficial layers of cartilage (mean, SD: 22.2 ± 3.5) compared with the IR-FS-UTE sequence (mean, SD: 10.8 ± 2.5 and 16.3 ± 2.6, respectively). The 3D DIR-UTE cones sequence is feasible for imaging of the OCJ region of the knee in vivo and produces both high resolution and high contrast.


Assuntos
Osso e Ossos/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Meios de Contraste/química , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo
17.
Eur Radiol ; 31(10): 7653-7663, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33783571

RESUMO

OBJECTIVE: To develop a fully automated full-thickness cartilage segmentation and mapping of T1, T1ρ, and T2*, as well as macromolecular fraction (MMF) by combining a series of quantitative 3D ultrashort echo time (UTE) cones MR imaging with a transfer learning-based U-Net convolutional neural networks (CNN) model. METHODS: Sixty-five participants (20 normal, 29 doubtful-minimal osteoarthritis (OA), and 16 moderate-severe OA) were scanned using 3D UTE cones T1 (Cones-T1), adiabatic T1ρ (Cones-AdiabT1ρ), T2* (Cones-T2*), and magnetization transfer (Cones-MT) sequences at 3 T. Manual segmentation was performed by two experienced radiologists, and automatic segmentation was completed using the proposed U-Net CNN model. The accuracy of cartilage segmentation was evaluated using the Dice score and volumetric overlap error (VOE). Pearson correlation coefficient and intraclass correlation coefficient (ICC) were calculated to evaluate the consistency of quantitative MR parameters extracted from automatic and manual segmentations. UTE biomarkers were compared among different subject groups using one-way ANOVA. RESULTS: The U-Net CNN model provided reliable cartilage segmentation with a mean Dice score of 0.82 and a mean VOE of 29.86%. The consistency of Cones-T1, Cones-AdiabT1ρ, Cones-T2*, and MMF calculated using automatic and manual segmentations ranged from 0.91 to 0.99 for Pearson correlation coefficients, and from 0.91 to 0.96 for ICCs, respectively. Significant increases in Cones-T1, Cones-AdiabT1ρ, and Cones-T2* (p < 0.05) and a decrease in MMF (p < 0.001) were observed in doubtful-minimal OA and/or moderate-severe OA over normal controls. CONCLUSION: Quantitative 3D UTE cones MR imaging combined with the proposed U-Net CNN model allows a fully automated comprehensive assessment of articular cartilage. KEY POINTS: • 3D UTE cones imaging combined with U-Net CNN model was able to provide fully automated cartilage segmentation. • UTE parameters obtained from automatic segmentation were able to reliably provide a quantitative assessment of cartilage.


Assuntos
Cartilagem Articular , Imageamento Tridimensional , Cartilagem Articular/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
18.
Radiology ; 294(2): 362-374, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31746689

RESUMO

Background Signal contamination from long T2 water is a major challenge in direct imaging of myelin with MRI. Nulling of the unwanted long T2 signals can be achieved with an inversion recovery (IR) preparation pulse to null long T2 white matter within the brain. The remaining ultrashort T2 signal from myelin can be detected with an ultrashort echo time (UTE) sequence. Purpose To develop patient-specific whole-brain myelin imaging with a three-dimensional double-echo sliding inversion recovery (DESIRE) UTE sequence. Materials and Methods The DESIRE UTE sequence generates a series of IR images with different inversion times during a single scan. The optimal inversion time for nulling long T2 signal is determined by finding minimal signal on the second echo. Myelin images are generated by subtracting the second echo image from the first UTE image. To validate this method, a prospective study was performed in phantoms, cadaveric brain specimens, healthy volunteers, and patients with multiple sclerosis (MS). A total of 20 healthy volunteers (mean age, 40 years ± 13 [standard deviation], 10 women) and 20 patients with MS (mean age, 58 years ± 8; 15 women) who underwent MRI between November 2017 and February 2019 were prospectively included. Analysis of variance was performed to evaluate the signal difference between MS lesions and normal-appearing white matter in patients with MS. Results High signal intensity and corresponding T2* and T1 of the extracted myelin vesicles provided evidence for direct imaging of ultrashort-T2 myelin protons using the UTE sequence. Gadobenate dimeglumine phantoms with a wide range of T1 values were selectively suppressed with DESIRE UTE. In the ex vivo brain study of MS lesions, signal loss was observed in MS lesions and was conformed with histologic analysis. In the human study, there was a significant reduction in normalized signal intensity in MS lesions compared with that in normal-appearing white matter (0.19 ± 0.10 vs 0.76 ± 0.11, respectively; P < .001). Conclusion The double-echo sliding inversion recovery ultrashort echo time sequence can generate whole-brain myelin images specifically with a clinical 3-T scanner. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Port in this issue.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
19.
Radiology ; 297(2): 392-404, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779970

RESUMO

Background Water signal contamination is a major challenge for direct ultrashort echo time (UTE) imaging of myelin in vivo because water contributes most of the signals detected in white matter. Purpose To validate a new short repetition time (TR) adiabatic inversion recovery (STAIR) prepared UTE (STAIR-UTE) sequence designed to suppress water signals and to allow imaging of ultrashort T2 protons of myelin in white matter using a clinical 3-T scanner. Materials and Methods In this prospective study, an optimization framework was used to obtain the optimal inversion time for nulling water signals using STAIR-UTE imaging at different TRs. Numeric simulation and phantom studies were performed. Healthy volunteers and participants with multiple sclerosis (MS) underwent MRI between November 2018 and October 2019 to compare STAIR-UTE and a clinical T2-weighted fluid-attenuated inversion recovery sequence for assessment of MS lesions. UTE measures of myelin were also performed to allow comparison of signals in lesions and with those in normal-appearing white matter (NAWM) in patients with MS and in normal white matter (NWM) in healthy volunteers. Results Simulation and phantom studies both suggest that the proposed STAIR-UTE technique can effectively suppress long T2 tissues with a broad range of T1s. Ten healthy volunteers (mean age, 33 years ± 8 [standard deviation]; six women) and 10 patients with MS (mean age, 51 years ± 16; seven women) were evaluated. The three-dimensional STAIR-UTE sequence effectively suppressed water components in white matter and selectively imaged myelin, which had a measured T2* value of 0.21 msec ± 0.04 in the volunteer study. A much lower mean UTE measure of myelin proton density was found in MS lesions (3.8 mol/L ± 1.5), and a slightly lower mean UTE measure was found in NAWM (7.2 mol/L ± 0.8) compared with that in NWM (8.0 mol/L ± 0.8) in the healthy volunteers (P < .001 for both comparisons). Conclusion The short repetition time adiabatic inversion recovery-prepared ultrashort echo time sequence provided efficient water signal suppression for volumetric imaging of myelin in the brain and showed excellent myelin signal contrast as well as marked ultrashort echo time signal reduction in multiple sclerosis lesions and a smaller reduction in normal-appearing white matter compared with normal white matter in volunteers. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Messina and Port in this issue.


Assuntos
Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Estudos Prospectivos
20.
Magn Reson Med ; 84(5): 2551-2560, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32419199

RESUMO

PURPOSE: To investigate the magic angle effect in three-dimensional ultrashort echo time Cones Adiabatic T1ρ (3D UTE Cones-AdiabT1ρ ) imaging of articular cartilage at 3T. METHODS: The magic angle effect was investigated by repeated 3D UTE Cones-AdiabT1ρ imaging of eight human patellar samples at five angular orientations ranging from 0° to 90° relative to the B0 field. Cones continuous wave T1ρ (Cones-CW-T1ρ ) and Cones- T2∗ sequences were also applied for comparison. Cones-AdiabT1ρ , Cones-CW-T1ρ and Cones- T2∗ values were measured for four regions of interest (ROIs) (10% superficial layer, 60% transitional layer, 30% radial layer, and a global ROI) for each sample at each orientation to evaluate their angular dependence. RESULTS: 3D UTE Cones-AdiabT1ρ values increased from the radial layer to the superficial layer for all angular orientations. The superficial layer showed the least angular dependence (around 4.4%), while the radial layer showed the strongest angular dependence (around 34.4%). Cones-AdiabT1ρ values showed much reduced magic angle effect compared to Cones-CW-T1ρ and Cones- T2∗ values for all four ROIs. On average over eight patellae, Cones-AdiabT1ρ values increased by 27.2% (4.4% for superficial, 23.8% for transitional, and 34.4% for radial layers), Cones-CW-T1ρ values increased by 76.9% (11.3% for superficial, 59.1% for transitional, and 117.8% for radial layers), and Cones- T2∗ values increased by 237.5% (87.9% for superficial, 262.9% for transitional, and 327.3% for radial layers) near the magic angle. CONCLUSIONS: The 3D UTE Cones-AdiabT1ρ sequence is less sensitive to the magic angle effect in the evaluation of articular cartilage compared to Cones- T2∗ and Cones-CW-T1ρ .


Assuntos
Cartilagem Articular , Cartilagem Articular/diagnóstico por imagem , Testes Diagnósticos de Rotina , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Patela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA