Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(22): e2309917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520717

RESUMO

Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.


Assuntos
Antígeno B7-H1 , Nanopartículas , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Nanopartículas/química , Animais , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Feminino , Modelos Animais de Doenças , Lipídeos/química , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Camundongos Endogâmicos BALB C , Imunoterapia/métodos , Lipossomos
2.
Biomater Res ; 27(1): 124, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031117

RESUMO

BACKGROUND: Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS: In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS: We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS: This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.

3.
Pharmaceutics ; 14(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745843

RESUMO

In vitro transcribed mRNA for the synthesis of any given protein has shown great potential in cancer gene therapy, especially in cancer vaccines for immunotherapy. To overcome physiological barriers, such as rapid degradation by enzymatic attack and poor cellular uptake due to their large size and hydrophilic properties, many delivery carriers for mRNAs are being investigated for improving the bioavailability of mRNA. Recently, cell-penetrating peptides (CPPs) have received attention as promising tools for gene delivery. In terms of their biocompatibility and the ability to target specific cells with the versatility of peptide sequences, they may provide clues to address the challenges of conventional delivery systems for cancer mRNA delivery. In this study, optimal conditions for the CPP/mRNA complexes were identified in terms of complexation capacity and N/P ratio, and protection against RNase was confirmed. When cancer cells were treated at a concentration of 6.8 nM, which could deliver the highest amount of mRNA without toxicity, the amphipathic CPP/mRNA complexes with a size less than 200 nm showed high cellular uptake and protein expression. With advances in our understanding of CPPs, CPPs designed to target tumor tissues will be promising for use in developing a new class of mRNA delivery vehicles in cancer therapy.

4.
Front Cell Dev Biol ; 10: 815205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359449

RESUMO

Human hair dermal papillary (DP) cells comprising mesenchymal stem cells in hair follicles contribute critically to hair growth and cycle regulation. The transition of hair follicles from telogen to anagen phase is the key to regulating hair growth, which relies heavily on the activation of DP cells. In this paper, we suggested exosomes derived from bovine colostrum (milk exosomes, Milk-exo) as a new effective non-surgical therapy for hair loss. Results showed that Milk-exo promoted the proliferation of hair DP cells and rescued dihydrotestosterone (DHT, androgen hormones)-induced arrest of follicle development. Milk-exo also induced dorsal hair re-growth in mice at the level comparable to minoxidil treatment, without associated adverse effects such as skin rashes. Our data demonstrated that Milk-exo accelerated the hair cycle transition from telogen to anagen phase by activating the Wnt/ß-catenin pathway. Interestingly, Milk-exo has been found to stably retain its original properties and efficacy for hair regeneration after freeze-drying and resuspension, which is considered critical to use it as a raw material applied in different types of alopecia medicines and treatments. Overall, this study highlights a great potential of an exosome from colostrum as a therapeutic modality for hair loss.

5.
J Control Release ; 345: 62-74, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35263615

RESUMO

Upregulation of oncogenic miRNA21 (miR-21) plays a pivotal role in proliferation, migration and invasion of cancer cells. In addition to cancer cells, tumor-associated macrophages (TAMs) also have high abundance of miR-21, which accelerates malignant progression of tumors in the late stages of carcinogenesis. Despite of the pro-tumorigenic functions of miR-21 in TAMs and cancer cells, reliable therapeutic strategies to simultaneously inhibit miR-21 activity in both types of cell have not yet been developed. In this study, we designed a dual-targeting drug delivery system of miR-21 inhibitors that could bind to both tumor cells and macrophages with overexpressed PD-L1 receptors. This peptide-oligonucleotide conjugate (Pep-21) consists of a PDL1-binding peptide covalently linked with an anti-miR-21 inhibitor via click chemistry. Pep-21 was preferentially internalized in both cell types, consequently depleting endogenous miR-21. Our studies found that Pep-21 treatment reduced tumor cell migration, reprogrammed immunosuppressive M2-type TAMs into M1-type macrophages, and restrained tumor progression. Collectively, neutralization of miR-21 activity in both cancer cells and TAMs can be a promising strategy for effective antitumor responses.


Assuntos
MicroRNAs , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Peptídeos , Microambiente Tumoral , Macrófagos Associados a Tumor
6.
Biomater Sci ; 10(8): 2076-2087, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35315847

RESUMO

Despite the rise in the global burden of inflammatory bowel disease, there is a lack of safe and effective therapies that can meet the needs of clinical patients. In this study, we investigated the beneficial effects of bovine milk, especially colostrum-derived exosomes (Col-exo) in a murine model of ulcerative colitis induced by dextran sodium sulfate (DSS). Col-exo activated the proliferation of colonic epithelial cells and macrophages, and created an environment to relieve inflammation by effectively removing reactive oxygen species and regulating the expression of immune cytokines. Besides, Col-exo could pass through the gastrointestinal tract intact and efficiently deliver bioactive cargoes to the stomach, small intestine, and colon. Our results showed that oral gavage of Col-exo can alleviate colitis symptoms including weight loss, gastrointestinal bleeding, and chronic diarrhea by modulating intestinal inflammatory immune responses. Overall, bovine colostrum-derived exosomes with excellent structural and functional stability may offer great potential as natural therapeutics for the recovery of colitis.


Assuntos
Colite , Exossomos , Animais , Colite/induzido quimicamente , Colite/prevenção & controle , Colostro/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Gravidez
7.
Adv Healthc Mater ; 11(6): e2102027, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865307

RESUMO

As wound healing is an extremely complicated process, consisting of a cascade of interlocking biological events, successful wound healing requires a multifaceted approach to support appropriate and rapid transitions from the inflammatory to proliferative and remodeling phases. In this regard, here the potential use of bovine milk extracellular vesicles (EVs) to enhance wound healing is investigated. The results show that milk EVs promote fibroblast proliferation, migration, and endothelial tube formation. In particular, milk EVs derived from colostrum (Colos EVs) contain various anti-inflammatory factors facilitating the transition from inflammation to proliferation phase, as well as factors for tissue remodeling and angiogenesis. In an excisional wound mouse model, Colos EVs promote re-epithelialization, activate angiogenesis, and enhance extracellular matrix maturation. Interestingly, Colos EVs are further found to be quite resistant to freeze-drying procedures, maintaining their original characteristics and efficacy for wound repair after lyophilization. These findings on the superior stability and excellent activity of milk Colos EVs indicate that they hold great promise to be developed as anti-inflammatory therapeutics, especially for the treatment of cutaneous wounds.


Assuntos
Colostro , Vesículas Extracelulares , Animais , Feminino , Inflamação , Camundongos , Leite , Gravidez , Cicatrização/fisiologia
8.
Adv Mater ; 33(48): e2105248, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611943

RESUMO

Although metastable crystal structures have received much attention owing to their utilization in various fields, their phase-transition to a thermodynamic structure has attracted comparably little interest. In the case of nanoscale crystals, such an exothermic phase-transition releases high energy within a confined surface area and reconstructs surface atomic arrangement in a short time. Thus, this high-energy nanosurface may create novel crystal structures when some elements are supplied. In this work, the creation of a ruthenium carbide (RuCX , X < 1) phase on the surface of the Ru nanocrystal is discovered during phase-transition from cubic-close-packed to hexagonal-close-packed structure. When the electrocatalytic hydrogen evolution reaction (HER) is tested in alkaline media, the RuCX exhibits a much lower overpotential and good stability relative to the counterpart Ru-based catalysts and the state-of-the-art Pt/C catalyst. Density functional theory calculations predict that the local heterogeneity of the outermost RuCX surface promotes the bifunctional HER mechanism by providing catalytic sites for both H adsorption and facile water dissociation.

9.
Diagnostics (Basel) ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375089

RESUMO

The water proton spin relaxivity, colloidal stability, and biocompatibility of nanoparticle-based magnetic resonance imaging (MRI) contrast agents depend on the surface-coating ligands. Here, poly(acrylic acid-co-maleic acid) (PAAMA) (Mw = ~3000 amu) is explored as a surface-coating ligand of ultrasmall gadolinium oxide (Gd2O3) nanoparticles. Owing to the numerous carboxylic groups in PAAMA, which allow its strong conjugation with the nanoparticle surfaces and the attraction of abundant water molecules to the nanoparticles, the synthesized PAAMA-coated ultrasmall Gd2O3 nanoparticles (davg = 1.8 nm and aavg = 9.0 nm) exhibit excellent colloidal stability, extremely low cellular toxicity, and a high longitudinal water proton spin relaxivity (r1) of 40.6 s-1mM-1 (r2/r1 = 1.56, where r2 = transverse water proton spin relaxivity), which is approximately 10 times higher than those of commercial molecular contrast agents. The effectiveness of PAAMA-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent is confirmed by the high positive contrast enhancements of the in vivo T1 MR images at the 3.0 T MR field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA