Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(12): 4702-4711, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35622690

RESUMO

Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Pontos Quânticos/química
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685909

RESUMO

Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.


Assuntos
Nanopartículas Metálicas , Ouro , Eletricidade , Filmes Cinematográficos , Tamanho da Partícula
3.
Opt Express ; 24(8): 8045-53, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137243

RESUMO

We have designed a single photon emitter based on a single quantum dot embedded within a single mode parabolic solid immersion lens (pSIL) and a capping low-index pSIL. Numerical simulations predicted that the emitter performance should exhibit a high photon collection efficiency with excellent far-field emission properties, broadband operation, and good tolerance in its geometric (spatial configuration) parameters. Good geometric tolerance in a single-mode pSIL without yielding significant losses in the photon collection efficiency is advantageous for device fabrication. The low-index top pSIL layer provided this structure with a high photon collection efficiency, even in the case of a small numerical aperture (NA). Photon collection efficiencies of 64% and 78% were expected for NA values of 0.41 and 0.5, respectively. In addition to the benefits listed above, our combined pSIL design provided excellent broadband performance in a 100 nm range.

4.
Curr Res Food Sci ; 8: 100726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590692

RESUMO

This study reported an application of Au nanogap substrates for surface-enhanced Raman scattering (SERS) measurements to quantitatively analyze melamine and its derivative products at trace levels in pet liquid food (milk) combined with a waveband selection approach, namely variable importance in projection (VIP). Six different concentrations of melamine, cyanuric acid, and melamine combined with cyanuric acid were created, and SERS spectra were acquired from 550 to 1620cm-1. Detection was possible up to 200 pM for melamine-contaminated samples, and 400 pM concentration detection for other two groups. The VIP-PLSR models obtained correlation coefficient (R2) values of 0.997, 0.985, and 0.981, with root mean square error of prediction (RMSEP) values of 18.492 pM, 19.777 pM, and 15.124 pM for prediction datasets. Additionally, partial least square discriminant analysis (PLS-DA) was used to classify both pure and different concentrations of spiked samples. The results showed that the maximum classification accuracy for melamine was 100%, for cyanuric acid it was 96%, and for melamine coupled with cyanuric acid it was 95%. The results obtained clearly demonstrated that the Au nanogap substrate offers low-concentration, rapid, and efficient detection of hazardous additive chemicals in pet consuming liquid food.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123996, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350410

RESUMO

Non-invasive and passive detection of explosives in the vapor phase is advantageous for military, counter-terrorism, and homeland security applications. Detection of explosives using SERS has been an active research topic. However, the vapor pressures of most explosives are low at room temperature, and consequently, the vapor phase detection by SERS is highly challenging without intentionally heating explosive powder to increase the vapor pressure. In this work, we report the rapid and sensitive detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (2,4-DNT) in the vapor phase, using a gold nanogap (AuNG) SERS substrate. The AuNG SERS substrate was fabricated with electron beam evaporation, rapid thermal annealing, and wet etching. SERS measurements were carried out with an incident power as low as 0.56 mW at 785 nm. To prevent the condensation effect, the TNT and 2,4-DNT powders inside the cuvette were taken out before inserting the nanogap substrate. Our SERS results demonstrate the feasibility of the non-invasive detection of vapor phase explosives under ambient conditions.

6.
Food Chem ; 457: 140486, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032478

RESUMO

A gold nanogap substrate was used to measure the thiram and carbaryl residues in various fruit juices using surface-enhanced Raman scattering (SERS). The gold nanogap substrates can detect carbaryl and thiram with limits of detection of 0.13 ppb (0.13 µgkg-1) and 0.22 ppb (0.22 µgkg-1). Raw SERS data were first preprocessed to reduce noise and undesirable effects and, were later used for model creation, implementing classification, and regression analysis techniques. The partial least-squares regression models achieved the highest prediction correlation coefficient (R2) of 0.99 and the lowest root mean square of prediction value below 0.62 ppb for both pesticide-infected juice samples. Furthermore, to differentiate between juice samples contaminated by both pesticides and control (pesticide-free), logistic-regression classification models were produced and achieved the highest classification accuracies of 100% and 99% for contaminated juice containing thiram and 100% accurate results for contaminated juice containing carbaryl. This indicates that the gold nanogap surface has significant potential for achieving high sensitivity in detecting trace contaminants in food samples.


Assuntos
Carbaril , Contaminação de Alimentos , Sucos de Frutas e Vegetais , Ouro , Resíduos de Praguicidas , Análise Espectral Raman , Tiram , Resíduos de Praguicidas/análise , Análise Espectral Raman/métodos , Carbaril/análise , Sucos de Frutas e Vegetais/análise , Tiram/análise , Contaminação de Alimentos/análise , Ouro/química , Quimiometria , Nanopartículas Metálicas/química , Limite de Detecção , Frutas/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122734, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080052

RESUMO

Conventional spectroscopic methods like IR, and Raman are not very effective at detecting low levels of pesticides or harmful chemicals in food matrices. A quick, highly accurate approach that can identify pesticides present in different food products at lower levels must be developed in order to address this problem and ensure food safety. In this study, a highly sensitive and uniform wafer-scale Au nanogap surface-enhanced Raman spectroscopy (SERS) substrate was used for the quantitative analysis of carbaryl pesticide levels in standard solution, mango juice, and milk samples using chemometrics. Carbaryl was detected up to 3 ppb concentration levels for all three group of samples. However, due to the higher sensitivity, uniformity, and enhancement factors of the SERS substrate used in this investigation, the limit of detection (LOD) values for the standard solution, mango juice, and milk were 0.37 ppb, 0.57 ppb, and 0.15 ppb at 1380 cm-1, 1380 cm-1, and 1364 cm-1 wavenumber ranges. In order to predict different carbaryl concentrations (1, 2, 3, 4, and 5 ppb), the variable importance in projection (VIP) method combined with partial least squares regression (PLSR) and attained the coefficient of determination (R2) values of 0.994, 0.989, and 0.978 along with minimum root mean square error (RMSE) values of 0.112, 0.190, and 0.278 ppb for the prediction datasets. Furthermore, PLS-DA was able to distinguish between pure and adulterated samples with the highest classification accuracy of 100 % for a standard solution, and mango juice and 94.4 % for milk samples. Considering this, we can conclude that the SERS Au Nanogap substrate can rapidly and effectively detect carbaryl pesticides quantitatively and qualitatively in mango juice and milk.


Assuntos
Praguicidas , Animais , Praguicidas/análise , Carbaril/análise , Leite/química , Análise Espectral Raman/métodos , Inocuidade dos Alimentos , Ouro/química
8.
Opt Lett ; 35(15): 2532-4, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680048

RESUMO

We demonstrate a terahertz (THz) spectrum analyzer based on frequency and power measurement. A power spectrum of a continuous THz wave is measured through optical heterodyne detection using an electromagnetic THz frequency comb and a bolometer and power measurement using a bolometer with a calibrated responsivity. The THz spectrum analyzer has a frequency precision of 1x10(-11), a frequency resolution of 1Hz, a frequency band up to 1.7THz, and an optical noise equivalent power of approximately 1 pW/Hz(1/2).

9.
Opt Express ; 17(16): 13851-9, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654791

RESUMO

We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.


Assuntos
Lasers Semicondutores , Iluminação/instrumentação , Espectroscopia Terahertz/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Luz , Modelos Teóricos , Espalhamento de Radiação , Radiação Terahertz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA