Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(9): 815-825, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37433704

RESUMO

Metal micronutrients are essential for life and exist in a delicate balance to maintain an organism's health. The labile nature of metal-biomolecule interactions clouds the understanding of metal binders and metal-mediated conformational changes that are influential to health and disease. Mass spectrometry (MS)-based methods and technologies have been developed to better understand metal micronutrient dynamics in the intra- and extracellular environment. In this review, we describe the challenges associated with studying labile metals in human biology and highlight MS-based methods for the discovery and study of metal-biomolecule interactions.


Assuntos
Metais , Humanos , Metais/química , Espectrometria de Massas/métodos
2.
Chem Soc Rev ; 52(11): 3927-3945, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37203389

RESUMO

Transition metal dysregulation is associated with a host of pathologies, many of which are therapeutically targeted using chelators and ionophores. Chelators and ionophores are used as therapeutic metal-binding compounds which impart biological effects by sequestering or trafficking endogenous metal ions in an effort to restore homeostasis. Many current therapies take inspiration or derive directly from small molecules and peptides found in plants. This review focuses on plant-derived small molecule and peptide chelators and ionophores that can affect metabolic disease states. Understanding the coordination chemistry, bioavailability, and bioactivity of such molecules provides the tools to further research applications of plant-based chelators and ionophores.


Assuntos
Quelantes , Elementos de Transição , Ionóforos/farmacologia , Ionóforos/uso terapêutico , Ionóforos/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Quelantes/química , Metais , Plantas/metabolismo , Peptídeos
3.
J Am Chem Soc ; 145(30): 16726-16738, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486968

RESUMO

Peptide hormones are essential signaling molecules with therapeutic importance. Identifying regulatory factors that drive their activity gives important insight into their mode of action and clinical development. In this work, we demonstrate the combined impact of Cu(II) and the serum protein albumin on the activity of C-peptide, a 31-mer peptide derived from the same prohormone as insulin. C-peptide exhibits beneficial effects, particularly in diabetic patients, but its clinical use has been hampered by a lack of mechanistic understanding. We show that Cu(II) mediates the formation of ternary complexes between albumin and C-peptide and that the resulting species depend on the order of addition. These ternary complexes notably alter peptide activity, showing differences from the peptide or Cu(II)/peptide complexes alone in redox protection as well as in cellular internalization of the peptide. In standard clinical immunoassays for measuring C-peptide levels, the complexes inflate the quantitation of the peptide, suggesting that such adducts may affect biomarker quantitation. Altogether, our work points to the potential relevance of Cu(II)-linked C-peptide/albumin complexes in the peptide's mechanism of action and application as a biomarker.


Assuntos
Cobre , Albumina Sérica , Humanos , Albumina Sérica/metabolismo , Cobre/química , Peptídeo C , Peptídeos/metabolismo , Oxirredução
4.
Inorg Chem ; 59(13): 9339-9349, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510934

RESUMO

The connecting peptide (C-peptide) is a hormone with promising health benefits in ameliorating diabetes-related complications, yet mechanisms remain elusive. Emerging studies point to a possible dependence of peptide activity on bioavailable metals, particularly Cu(II) and Zn(II). However, little is known about the chemical nature of the interactions, hindering advances in its therapeutic applications. This work uncovers the Cu(II)-binding site in C-peptide that may be key to understanding its metal-dependent function. A combination of spectroscopic studies reveal that Cu(II) and Zn(II) bind to C-peptide at specific residues in the N-terminal region of the peptide and that Cu(II) is able to displace Zn(II) for C-peptide binding. The data point to a Cu(II)-binding site consisting of 1N3O square-planar coordination that is entropically driven. Furthermore, the entire random coil peptide sequence is needed for specific metal binding as mutations and truncations reshuffle the coordinating residues. These results expand our understanding of how metals influence hormone activity and facilitate the discovery and validation of both new and established paradigms in peptide biology.


Assuntos
Peptídeo C/metabolismo , Cobre/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Peptídeo C/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Zinco/metabolismo
5.
iScience ; 25(4): 104138, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35402881

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are increasingly appearing in drinking water sources globally. Our work focuses specifically on the adsorption of the legacy perfluorooctanoic acid (PFOA) using mesoporous hafnium oxide (MHO) ceramic synthesized via a sol-gel process. Experiments were performed at varying pH to determine the effect of surface charge on adsorption capacity of PFOA by MHO, and to postulate adsorption behavior. At pH 2.3, the adsorption capacity of PFOA on MHO was 20.9 mg/g, whereas at a higher pH of 6.3, it was much lower at 9.2 mg/g. This was due to increased coulombic attractions at lower pH between the positively charged conjugate acid active sites on MHO surface and negatively charged deprotonated PFOA anion in solution. After adsorption, the solid MHO was regenerated via calcination, reducing the amount of toxic solid waste to be disposed since the adsorbent is regenerated, and the PFOA is completely removed.

6.
Metallomics ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929804

RESUMO

Copper is essential in a host of biological processes, and disruption of its homeostasis is associated with diseases including neurodegeneration and metabolic disorders. Extracellular copper shifts in its speciation between healthy and disease states, and identifying molecular components involved in these perturbations could widen the panel of biomarkers for copper status. While there have been exciting advances in approaches for studying the extracellular proteome with mass spectrometry-based methods, the typical workflows disrupt metal-protein interactions due to the lability of these bonds either during sample preparation or in gas-phase environments. We sought to develop and apply a workflow to enrich for and identify protein populations with copper-binding propensities in extracellular fluids using an immobilized metal affinity chromatography (IMAC) resin. The strategy was optimized using human serum to allow for maximum quantity and diversity of protein enrichment. Protein populations could be differentiated based on protein load on the resin, likely on account of differences in abundance and affinity. The enrichment workflow was applied to plasma samples from patients with Wilson's disease and protein IDs and differential abundancies relative to healthy subjects were compared to those yielded from a traditional proteomic workflow. While the IMAC workflow preserved differential abundance and protein ID information from the traditional workflow, it identified several additional proteins being differentially abundant including those involved in lipid metabolism, immune system, and antioxidant pathways. Our results suggest the potential for this IMAC workflow to identify new proteins as potential biomarkers in copper-associated disease states.


Assuntos
Cobre , Proteômica , Cromatografia de Afinidade/métodos , Cobre/metabolismo , Humanos , Espectrometria de Massas , Proteoma/análise , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA