Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120726

RESUMO

Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.

2.
Lab Chip ; 23(16): 3704-3715, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37483015

RESUMO

Key to our ability to increase recombinant protein production through secretion is a better understanding of the pathways that interact to translate, process and export mature proteins to the surrounding environment, including the supporting cellular machinery that supplies necessary energy and building blocks. By combining droplet microfluidic screening with large-scale CRISPR libraries that perturb the expression of the majority of coding and non-coding genes in S. cerevisiae, we identified 345 genes for which an increase or decrease in gene expression resulted in increased secretion of α-amylase. Our results show that modulating the expression of genes involved in the trafficking of vesicles, endosome to Golgi transport, the phagophore assembly site, the cell cycle and energy supply improve α-amylase secretion. Besides protein-coding genes, we also find multiple long non-coding RNAs enriched in the vicinity of genes associated with endosomal, Golgi and vacuolar processes. We validated our results by overexpressing or deleting selected genes, which resulted in significant improvements in α-amylase secretion. The advantages, in terms of precision and speed, inherent to CRISPR based perturbations, enables iterative testing of new strains for increased protein secretion.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Amilases/metabolismo , Microfluídica , alfa-Amilases/genética , alfa-Amilases/metabolismo
3.
Biotechnol Biofuels ; 14(1): 41, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568224

RESUMO

BACKGROUND: Baker's yeast is a widely used eukaryotic cell factory, producing a diverse range of compounds including biofuels and fine chemicals. The use of lignocellulose as feedstock offers the opportunity to run these processes in an environmentally sustainable way. However, the required hydrolysis pretreatment of lignocellulosic material releases toxic compounds that hamper yeast growth and consequently productivity. RESULTS: Here, we employ CRISPR interference in S. cerevisiae to identify genes modulating fermentative growth in plant hydrolysate and in presence of lignocellulosic toxins. We find that at least one-third of hydrolysate-associated gene functions are explained by effects of known toxic compounds, such as the decreased growth of YAP1 or HAA1, or increased growth of DOT6 knock-down strains in hydrolysate. CONCLUSION: Our study confirms previously known genetic elements and uncovers new targets towards designing more robust yeast strains for the utilization of lignocellulose hydrolysate as sustainable feedstock, and, more broadly, paves the way for applying CRISPRi screens to improve industrial fermentation processes.

4.
Cell Rep ; 35(1): 108936, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826901

RESUMO

Most mitochondrial proteins are synthesized as precursors in the cytosol and post-translationally transported into mitochondria. The mitochondrial surface protein Tom70 acts at the interface of the cytosol and mitochondria. In vitro import experiments identified Tom70 as targeting receptor, particularly for hydrophobic carriers. Using in vivo methods and high-content screens, we revisit the question of Tom70 function and considerably expand the set of Tom70-dependent mitochondrial proteins. We demonstrate that the crucial activity of Tom70 is its ability to recruit cytosolic chaperones to the outer membrane. Indeed, tethering an unrelated chaperone-binding domain onto the mitochondrial surface complements most of the defects caused by Tom70 deletion. Tom70-mediated chaperone recruitment reduces the proteotoxicity of mitochondrial precursor proteins, particularly of hydrophobic inner membrane proteins. Thus, our work suggests that the predominant function of Tom70 is to tether cytosolic chaperones to the outer mitochondrial membrane, rather than to serve as a mitochondrion-specifying targeting receptor.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Proteínas de Membrana/metabolismo , Agregados Proteicos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA