RESUMO
We have used a continuous-wave bi-static lidar system based on the Scheimpflug principle in measurements on flying insects above, and in the vicinity of, a small lake located in a forested area in Southern Sweden. The system, which operates on triangulation principles, has a high spatial resolution at close distance, followed by a subsequent decline in resolution further from the sensor, related to the compact system design with a separation of transmitter and receiver by only 0.81 m. Our study showed a strong increase in insect abundance especially at dusk, but also at dawn. Insect numbers decreased over water compared to over land, and larger insects were over-represented over water. Further, the average size of the insects increased at night compared to day time.
RESUMO
There are hundreds of thousands of moth species with crucial ecological roles that are often obscured by their nocturnal lifestyles. The pigmentation and appearance of moths are dominated by cryptic diffuse shades of brown. In this study, 82 specimens representing 26 moth species were analysed using infrared polarimetric hyperspectral imaging in the range of 0.95-2.5 µm. Contrary to previous studies, we demonstrate that since infrared light does not resolve the surface roughness, wings appear glossy and specular at longer wavelengths. Such properties provide unique reflectance spectra between species. The reflectance of the majority of our species could be explained by comprehensive models, and a complete parametrization of the spectral, polarimetric and angular optical properties was reduced to just 11 parameters with physical units. These parameters are complementary and, compared with the within-species variation, were significantly distinct between species. Counterintuitively to the aperture-limited resolution criterion, we could deduce microscopic features along the surface from their infrared properties. These features were confirmed by electron microscopy. Finally, we show how our findings could greatly enhance opportunities for remote identification of free-flying moth species, and we hypothesize that such flat specular wing targets could be expected to be sensed over considerable distances.
Assuntos
Mariposas , Animais , Microscopia , Pigmentação , Visão Ocular , Asas de Animais/ultraestruturaRESUMO
Lack of tools for detailed, real-time observation of mosquito behavior with high spatio-temporal resolution limits progress towards improved malaria vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect positioned over rice fields outside a Tanzanian village. A quarter of a million in situ insect observations were classified, and several insect taxa were identified based on their modulation signatures. We observed distinct range distributions of male and female mosquitoes in relation to the village periphery, and spatio-temporal behavioral features, such as swarming. Furthermore, we observed that the spatial distributions of males and females change independently of each other during the day, and were able to estimate the daily dispersal of mosquitoes towards and away from the village. The findings of this study demonstrate how lidar-based monitoring could dramatically improve our understanding of malaria vector ecology and control options.
Assuntos
Anopheles/fisiologia , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica/normas , Malária/diagnóstico , Mosquitos Vetores/parasitologia , População Rural/estatística & dados numéricos , África/epidemiologia , Animais , Feminino , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , MasculinoRESUMO
Forestry is raising concern about the outbreaks of European spruce bark beetle, Ips typographus, causing extensive damage to the spruce forest and timber values. Precise monitoring of these beetles is a necessary step towards preventing outbreaks. Current commercial monitoring methods are catch-based and lack in both temporal and spatial resolution. In this work, light scattering from beetles is characterized, and the feasibility of entomological lidar as a tool for long-term monitoring of bark beetles is explored. Laboratory optical properties, wing thickness, and wingbeat frequency of bark beetles are reported, and these parameters can infer target identity in lidar data. Lidar results from a Swedish forest with controlled bark beetle release event are presented. The capability of lidar to simultaneously monitor both insects and a pheromone plume mixed with chemical smoke governing the dispersal of many insects is demonstrated. In conclusion, entomological lidar is a promising tool for monitoring bark beetles.
Assuntos
Besouros , Picea , Animais , Feromônios , Casca de PlantaRESUMO
Yearly, a quarter billion people are infected and a half a million killed by the mosquito-borne disease malaria. Lack of real-time observational tools for continuously assessing the unperturbed mosquito flight activity in situ limits progress toward improved vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect adjacent to a Tanzanian village. We evaluated one-third million insect observations during five nights, four days, and one annular solar eclipse. We demonstrate in situ lidar classification of several insect families and their sexes based on their modulation signatures. We were able to compare the fine-scale spatiotemporal activity patterns of malaria vectors during ordinary days and an eclipse to disentangle phototactic activity patterns from the circadian mechanism. We observed an increased insect activity during the eclipse attributable to mosquitoes. These unprecedented findings demonstrate how lidar-based monitoring of distinct mosquito activities could advance our understanding of vector ecology.
Assuntos
Anopheles , Malária , Animais , Humanos , Mosquitos VetoresRESUMO
Despite numerous studies of selection on position and number of spectral vision bands, explanations to the function of narrow spectral bands are lacking. We investigate dragonflies (Odonata), which have the narrowest spectral bands reported, in order to investigate what features these narrow spectral bands may be used to perceive. We address whether it is likely that narrow red bands can be used to identify conspecifics by the optical signature from wing interference patterns (WIPs). We investigate the optical signatures of Odonata wings using hyperspectral imaging, laser profiling, ellipsometry, polarimetric modulation spectroscopy, and laser radar experiments. Based on results, we estimate the prospects for Odonata perception of WIPs to identify conspecifics in the spectral, spatial, intensity, polarization, angular, and temporal domains. We find six lines of evidence consistent with an ability to perceive WIPs. First, the wing membrane thickness of the studied Odonata is 2.3 µm, coinciding with the maximal thickness perceivable by the reported bandwidth. Second, flat wings imply that WIPs persist from whole wings, which can be seen at a distance. Third, WIPs constitute a major brightness in the visual environment only second after the solar disk. Fourth, WIPs exhibit high degree of polarization and polarization vision coincides with frontal narrow red bands in Odonata. Fifth, the angular light incidence on the Odonata composite eye provides all prerequisites for direct assessment of the refractive index which is associated with age. Sixth, WIPs from conspecifics in flight make a significant contribution even to the fundamental wingbeat frequency within the flicker fusion bandwidth of Odonata vision. We conclude that it is likely that WIPs can be perceived by the narrow red bands found in some Odonata species and propose future behavioral and electrophysiological tests of this hypothesis.
RESUMO
We present a dual-wavelength polarimetric measurement method to distinguish species and sexes of disease transmitting mosquitoes in flight. By measuring co- and de-polarized backscattered light at 808 and 1550 nm, the degree of linear polarization, wingbeat frequency, reflectance, spectral ratio and glossiness of mosquitoes can be retrieved. Body and wing contributions to these signals can be separated. Whereas the optical cross section is sensitive to the aspect of observation, thus the heading direction of the insect in flight, we demonstrate that polarimetric- and spectral-band ratios are largely invariant to the aspect of observation. We show that wing glossiness, as well as wing- and body-spectral ratios are particularly efficient in distinguishing Anopheles coluzzii and Anopheles arabiensis, 2 closely related species of malaria vectors. Spectral and polarimetric ratios relate to microstructural and melanization features of the wing and body of these species. We conclude that multiband modulation spectroscopy is a useful expansion of the parameter space that can be used to improve the specificity of entomological lidars.
Assuntos
Anopheles , Voo Animal , Análise para Determinação do Sexo/métodos , Análise Espectral , Animais , Feminino , Masculino , Especificidade da EspécieRESUMO
We present the results of, to our knowledge, the first Lidar study applied to continuous and simultaneous monitoring of aerial insects, bats and birds. It illustrates how common patterns of flight activity, e.g. insect swarming around twilight, depend on predation risk and other constraints acting on the faunal components. Flight activity was monitored over a rice field in China during one week in July 2016, using a high-resolution Scheimpflug Lidar system. The monitored Lidar transect was about 520 m long and covered approximately 2.5 m3. The observed biomass spectrum was bimodal, and targets were separated into insects and vertebrates in a categorization supported by visual observations. Peak flight activity occurred at dusk and dawn, with a 37 min time difference between the bat and insect peaks. Hence, bats started to feed in declining insect activity after dusk and stopped before the rise in activity before dawn. A similar time difference between insects and birds may have occurred, but it was not obvious, perhaps because birds were relatively scarce. Our observations are consistent with the hypothesis that flight activity of bats is constrained by predation in bright light, and that crepuscular insects exploit this constraint by swarming near to sunset/sunrise to minimize predation from bats.