Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 44(2): 431-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023962

RESUMO

The U.S. Corn Belt area has the capacity to generate high nitrous oxide (NO) emissions due to medium to high annual precipitation, medium- to heavy-textured soils rich in organic matter, and high nitrogen (N) application rates. The purpose of this work was to estimate NO emissions from cornfields in Iowa at the county level using the DeNitrification-DeComposition (DNDC) model and to compare the DNDC NO emission estimates with available results from field experiments. All data were acquired for 2007 to 2011. Weather Underground Network and the Iowa State University Iowa Soil Properties and Interpretation Database 7.3 were the data sources for DNDC inputs and for computing county soil parameters. The National Agriculture Statistic Service 5-yr averages for corn yield data were used to establish ex post fertilizer N input at the county level. The DNDC output suggested county-wide NO emissions in Iowa ranged from 2.2 kg NO-N ha yr in south-central to 4.6 to 4.7 kg NO-N ha yr in north-central and eastern Iowa counties. In northern districts, the average direct NO emissions were 3.2, 4.4, and 3.6 kg NO-N ha yr for west, central, and east, respectively. In central districts, average NO emissions were 3.5, 3.9, and 3.4 kg NO-N ha yr for west, central, and east, respectively. For southern districts, NO emissions were 3.5, 2.6, and 3.1 kg NO-N ha yr for west, central, and east, respectively. Direct NO emissions estimated by the DNDC model were 1.93% of N fertilizer input to corn fields in Iowa, with values ranging from 1.66% in the northwest cropping district to 2.25% in the north-central cropping district. These values are higher than the average 1% loss rate used in the IPCC Tier 1 approach.

2.
J Environ Qual ; 37(5): 1685-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18689729

RESUMO

Accurate assessment of N(2)O emission from soil requires continuous year-round and spatially extensive monitoring or the use of simulation that accurately and precisely predict N(2)O fluxes based on climatic, soil, and agricultural system input data. DAYCENT is an ecosystem model that simulates, among other processes, N(2)O emissions from soils. The purpose of the study was to compare N(2)O fluxes predicted by the DAYCENT model to measured N(2)O fluxes from an experimental corn field in central Iowa. Soil water content temperature and inorganic N, simulated by DAYCENT were compared to measured values of these variables. Field N(2)O emissions were measured using four replicated automated chambers at 6-h intervals, from day of year (DOY) 42 through DOY 254 of 2006. We observed that DAYCENT generally accurately predicted soil temperature, with the exception of winter when predicted temperatures tended to be lower than measured values. Volumetric water contents predicted by DAYCENT were generally lower than measured values during most of the experimental period. Daily N(2)O emissions simulated by DAYCENT were significantly correlated to field measured fluxes; however, time series analyses indicate that the simulated fluxes were out of phase with the measured fluxes. Cumulative N(2)O emission calculated from the simulations (3.29 kg N(2)O-N ha(-1)) was in range of the measured cumulative N(2)O emission (4.26 +/- 1.09 kg N(2)O-N ha(-1)).


Assuntos
Simulação por Computador , Modelos Biológicos , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Zea mays/metabolismo , Animais , Software , Solo , Temperatura
3.
J Environ Qual ; 37(4): 1432-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18574174

RESUMO

The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.


Assuntos
Fertilizantes , Gases , Efeito Estufa , Esterco , Nitrogênio , Solo/análise , Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA