Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 40(2): 492-504, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520757

RESUMO

Extended end-member mixing analysis (E-EMMA) is presented as a novel empirical method for exploring phosphorus (P) retention and release in rivers and watersheds, as an aid to water-quality management. E-EMMA offers a simple and versatile tool that relies solely on routinely measured P concentration and flow data. E-EMMA was applied to two river systems: the Thames (U.K.) and Sandusky River (U.S.), which drain similar watershed areas but have contrasting dominant P sources and hydrology. For both the Thames and Sandusky, P fluxes at the watershed outlets were strongly influenced by processes that retain and cycle P. However, patterns of P retention were markedly different for the two rivers, linked to differences in P sources and speciation, hydrology and land use. On an annual timescale, up to 48% of the P flux was retained for the Sandusky and up to 14% for the Thames. Under ecologically critical low-flow periods, up to 93% of the P flux was retained for the Sandusky and up to 42% for the Thames. In the main River Thames and the Sandusky River, in-stream processes under low flows were capable of regulating the delivery of P and modifying the timing of delivery in a way that may help to reduce ecological impacts to downstream river reaches, by reducing ambient P concentrations at times of greatest river eutrophication risk. The results also suggest that by moving toward cleaner rivers and improved ecosystem health, the efficiency of P retention may actually increase.


Assuntos
Monitoramento Ambiental/métodos , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Ohio , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA