Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 22(1): 171, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270589

RESUMO

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Etiópia/epidemiologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária/tratamento farmacológico , Lumefantrina/uso terapêutico , Plasmodium falciparum , Polimorfismo de Nucleotídeo Único , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico , Resistência a Medicamentos/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-33020162

RESUMO

Monitoring of Plasmodium falciparum sensitivity to antimalarial drugs in Africa is vital for malaria elimination. However, the commonly used ex vivo/in vitro 50% inhibitory concentration (IC50) test gives inconsistent results for several antimalarials, while the alternative ring-stage survival assay (RSA) for artemisinin derivatives has not been widely adopted. Here, we applied an alternative two-color flow cytometry-based parasite survival rate assay (PSRA) to detect ex vivo antimalarial tolerance in P. falciparum isolates from The Gambia. The PSRA infers parasite viability by quantifying reinvasion of uninfected cells following 3 consecutive days of drug exposure (10-fold the IC50 of drug for field isolates). The drug survival rate is obtained for each isolate from the slope of the growth/death curve. We obtained parasite survival rates of 41 isolates for dihydroartemisinin (DHA) and lumefantrine (LUM) out of 51 infections tested by ring-stage survival assay (RSA) against DHA. We also determined the genotypes for known drug resistance genetic loci in the P. falciparum genes Pfdhfr, Pfdhps, Pfmdr, Pfcrt, and Pfk13 The PSRA results determined for 41 Gambian isolates showed faster killing and lower variance after treatment with DHA than after treatment with LUM, despite a strong correlation between the two drugs. Four and three isolates were tolerant to DHA and LUM, respectively, with continuous growth during drug exposure. Isolates with the PfMDR1-Y184F mutant variant showed increased LUM survival, though the results were not statistically significant. Sulfadoxine/pyrimethamine (SP) resistance markers were fixed, while all other antimalarial variants were prevalent in more than 50% of the population. The PSRA detected ex vivo antimalarial tolerance in Gambian P. falciparum This calls for its wider application and for increased vigilance against resistance to artemisinin combination therapies (ACTs) in this population.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Parasitos , África , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Gâmbia , Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/uso terapêutico , Taxa de Sobrevida
3.
Artigo em Inglês | MEDLINE | ID: mdl-37329848

RESUMO

Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous discovery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical development.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Descoberta de Drogas
4.
Parasit Vectors ; 16(1): 309, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653544

RESUMO

BACKGROUND: The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS: Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS: Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS: Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Gâmbia/epidemiologia , Ácido N-Acetilneuramínico , Quimotripsina , Ligantes , Tripsina , Malária Falciparum/epidemiologia
5.
Sci Rep ; 9(1): 13515, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534181

RESUMO

Malaria has declined significantly in The Gambia and determining transmission dynamics of Plasmodium falciparum can help targeting control interventions towards elimination. This can be inferred from genetic similarity between parasite isolates from different sites and timepoints. Here, we imposed a P. falciparum life cycle time on a genetic distance likelihood model to determine transmission paths from a 54 SNP barcode of 355 isolates. Samples were collected monthly during the 2013 malaria season from six pairs of villages spanning 300 km from western to eastern Gambia. There was spatial and temporal hierarchy in pairwise genetic relatedness, with the most similar barcodes from isolates within the same households and village. Constrained by travel data, the model detected 60 directional transmission events, with 27% paths linking persons from different regions. We identified 13 infected individuals (4.2% of those genotyped) responsible for 2 to 8 subsequent infections within their communities. These super-infectors were mostly from high transmission villages. When considering paths between isolates from the most distant regions (west vs east) and travel history, there were 3 transmission paths from eastern to western Gambia, all at the peak (October) of the malaria transmission season. No paths with known travel originated from the extreme west to east. Although more than half of all paths were within-village, parasite flow from east to west may contribute to maintain transmission in western Gambia, where malaria transmission is already low. Therefore, interrupting malaria transmission in western Gambia would require targeting eastern Gambia, where malaria prevalence is substantially higher, with intensified malaria interventions.


Assuntos
Malária/genética , Malária/transmissão , Plasmodium falciparum/genética , Animais , Código de Barras de DNA Taxonômico/métodos , Feminino , Gâmbia/epidemiologia , Genótipo , Humanos , Malária Falciparum/parasitologia , Masculino , Parasitos , Polimorfismo de Nucleotídeo Único/genética , Prevalência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA