Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Genome Res ; 29(7): 1134-1143, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31171634

RESUMO

Copy number variants (CNVs) are a major cause of several genetic disorders, making their detection an essential component of genetic analysis pipelines. Current methods for detecting CNVs from exome-sequencing data are limited by high false-positive rates and low concordance because of inherent biases of individual algorithms. To overcome these issues, calls generated by two or more algorithms are often intersected using Venn diagram approaches to identify "high-confidence" CNVs. However, this approach is inadequate, because it misses potentially true calls that do not have consensus from multiple callers. Here, we present CN-Learn, a machine-learning framework that integrates calls from multiple CNV detection algorithms and learns to accurately identify true CNVs using caller-specific and genomic features from a small subset of validated CNVs. Using CNVs predicted by four exome-based CNV callers (CANOES, CODEX, XHMM, and CLAMMS) from 503 samples, we demonstrate that CN-Learn identifies true CNVs at higher precision (∼90%) and recall (∼85%) rates while maintaining robust performance even when trained with minimal data (∼30 samples). CN-Learn recovers twice as many CNVs compared to individual callers or Venn diagram-based approaches, with features such as exome capture probe count, caller concordance, and GC content providing the most discriminatory power. In fact, ∼58% of all true CNVs recovered by CN-Learn were either singletons or calls that lacked support from at least one caller. Our study underscores the limitations of current approaches for CNV identification and provides an effective method that yields high-quality CNVs for application in clinical diagnostics.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Aprendizado de Máquina , Algoritmos , Exoma , Humanos
2.
Invest Ophthalmol Vis Sci ; 63(1): 15, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015028

RESUMO

Purpose: This study investigates the association between local retina structure and visual function in a cohort with long-term hydroxychloroquine (HCQ) use. Methods: The study included 84 participants (54 participants without toxicity and 30 participants with toxicity) with history of chronic HCQ use (14.5 ± 7.4 years) who had testing with spectral-domain optical coherence tomography (SD-OCT) imaging and Humphrey 10-2 visual fields. Optical coherence tomography (OCT) metrics (total and outer retina thickness [TRT and ORT], minimum intensity [MinI], and ellipsoid zone [EZ] loss) were sampled in regions corresponding to visual field test locations. Univariate linear correlations were investigated and a multivariate random forest regression using a combination of OCT metrics was used to predict visual field sensitivity by locus using a leave-one-out cross-validation strategy. Results: In univariate linear regression, EZ loss demonstrated the strongest relationship with visual field sensitivities in the parafoveal ring with R2 = 0.58. TRT and ORT revealed positive correlations with visual field sensitivity (R2 = 0.57 and 0.40, respectively), whereas total and outer retinal MinI yielded negative correlations (R2 = 0.10 and 0.22). The multivariate model improved correlations (R2 = 0.66) yielding a root mean squared error of 3.8 decibel (dB). Feature importance analysis identified EZ loss as the most relevant predictor of function. Conclusions: Multiple OCT-derived quantitative metrics used in combination can provide information to predict local sensitivities. The results indicate a strong relationship between retinal function and OCT measures, which contribute to the understanding of the retinal toxicity caused by HCQ as well as being applicable to outcome development for other degenerative diseases of the outer retina.


Assuntos
Hidroxicloroquina/efeitos adversos , Doenças Retinianas/induzido quimicamente , Tomografia de Coerência Óptica/métodos , Acuidade Visual , Campos Visuais/efeitos dos fármacos , Idoso , Antirreumáticos/efeitos adversos , Eletrorretinografia , Feminino , Angiofluoresceinografia , Seguimentos , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doenças Retinianas/diagnóstico , Doenças Retinianas/fisiopatologia , Testes de Campo Visual
3.
Ophthalmol Sci ; 1(4): 100060, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36246938

RESUMO

Purpose: Retinal toxicity resulting from hydroxychloroquine use manifests photoreceptor loss and disruption of the ellipsoid zone (EZ) reflectivity band detectable on spectral-domain (SD) OCT imaging. This study investigated whether an automatic deep learning-based algorithm can detect and quantitate EZ loss on SD OCT images with an accuracy comparable with that of human annotations. Design: Retrospective analysis of data acquired in a prospective, single-center, case-control study. Participants: Eighty-five patients (168 eyes) who were long-term hydroxychloroquine users (average exposure time, 14 ± 7.2 years). Methods: A mask region-based convolutional neural network (M-RCNN) was implemented and trained on individual OCT B-scans. Scan-by-scan detections were aggregated to produce an en face map of EZ loss per 3-dimensional SD OCT volume image. To improve the accuracy and robustness of the EZ loss map, a dual network architecture was proposed that learns to detect EZ loss in parallel using horizontal (horizontal mask region-based convolutional neural network [M-RCNNH]) and vertical (vertical mask region-based convolutional neural network [M-RCNNV]) B-scans independently. To quantify accuracy, 10-fold cross-validation was performed. Main Outcome Measures: Precision, recall, intersection over union (IOU), F1-score metrics, and measured total EZ loss area were compared against human grader annotations and with the determination of toxicity based on the recommended screening guidelines. Results: The combined projection network demonstrated the best overall performance: precision, 0.90 ± 0.09; recall, 0.88 ± 0.08; and F1 score, 0.89 ± 0.07. The combined model performed superiorly to the M-RCNNH only model (precision, 0.79 ± 0.17; recall, 0.96 ± 0.04; IOU, 0.78 ± 0.15; and F1 score, 0.86 ± 0.12) and M-RCNNV only model (precision, 0.71 ± 0.21; recall, 0.94 ± 0.06; IOU, 0.69 ± 0.21; and F1 score, 0.79 ± 0.16). The accuracy was comparable with the variability of human experts: precision, 0.85 ± 0.09; recall, 0.98 ± 0.01; IOU, 0.82 ± 0.12; and F1 score, 0.91 ± 0.06. Automatically generated en face EZ loss maps provide quantitative SD OCT metrics for accurate toxicity determination combined with other functional testing. Conclusions: The algorithm can provide a fast, objective, automatic method for measuring areas with EZ loss and can serve as a quantitative assistance tool to screen patients for the presence and extent of toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA