Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864710

RESUMO

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Assuntos
Dependovirus , Fator VIII , Vetores Genéticos , Hemofilia A , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicações , Dependovirus/genética , RNA Longo não Codificante/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/metabolismo , Artropatias/terapia , Artropatias/genética , Artropatias/etiologia , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Masculino
2.
Mol Pharm ; 18(5): 2015-2031, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780253

RESUMO

Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.


Assuntos
Citarabina/administração & dosagem , Portadores de Fármacos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Polímeros/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citarabina/farmacocinética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Leucemia Mieloide Aguda/patologia , Camundongos , Nanopartículas/química , Distribuição Tecidual
3.
Mol Pharm ; 17(10): 3649-3653, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32857512

RESUMO

Adeno-associated virus (AAV)-based gene therapy is currently limited by (1) decline in therapeutic gene expression over time, (2) immune cell activation and (3) neutralization by pre-existing antibodies. Hence, studying the interaction of AAV vectors with various cellular pathways during the production and transduction process is necessary to overcome such barriers. Post-translational modifications (PTM) of AAV vectors during the production and transduction process is known to limit its transduction efficiency and further evoke the immune response. Further, AAV vectors are known to trigger cellular stress, resulting in an upregulation of distinct arms of the unfolded protein response (UPR) pathway. Recognition of the AAV genome by Toll-like receptor-9 triggers the myeloid differentiation primary response signaling cascade for innate (IL-6, IFN-α, IFN-ß) and adaptive (CD8+ T-cell, B-cell) immune response against the viral capsid and the transgene product. Herein, we highlight a potential intersection of the UPR, PTMs, and intracellular trafficking pathways, which could be fine-tuned to augment the outcome of AAV-based gene delivery.


Assuntos
Dependovirus/imunologia , Terapia Genética/métodos , Interações entre Hospedeiro e Microrganismos/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Transdução Genética/métodos , Imunidade Adaptativa/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Dependovirus/genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Imunidade Inata/genética , Processamento de Proteína Pós-Traducional/genética , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/imunologia
4.
Blood Cells Mol Dis ; 75: 48-55, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616104

RESUMO

Zebrafish is emerging as a promising model for the study of human cancers. Several xenograft models of zebrafish have been developed, particularly in larval stages (<48 h post fertilization) when the immune system of fish is not developed. However, xenografting in adult zebrafish requires laborious and transient methods of immune suppression (γ- irradiation or dexamethasone) that limits engraftment and survival of the tumor or fail to recapitulate specific characteristics of malignancies. Thus, the availability of a simple protocol to successfully engraft adult zebrafish, remains a challenge. The current study addresses this limitation and describes a robust method of xenografting in adult zebrafish. We describe a protocol that involves pre-conditioning of Casper, a pigmentation mutant of zebrafish with busulfan that led to a higher rate of engraftment of hepatocellular carcinoma and acute myeloid leukemia cells. To further ascertain the homing characteristics of the injected cancer cells, we transplanted adult zebrafish by two routes of administration and then studied their compartmentalization. This model presents a valuable alternative to rodents to study the biology of these cancers and also a cost-effective platform for evaluation of potential anti-cancer agents.


Assuntos
Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Xenoenxertos , Leucemia Mieloide Aguda/patologia , Neoplasias Hepáticas Experimentais/patologia , Peixe-Zebra , Animais , Bussulfano/farmacologia , Compartimento Celular , Humanos , Métodos
5.
Bioconjug Chem ; 30(9): 2404-2416, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436412

RESUMO

Current chemotherapeutic regimens for acute myeloid leukemia (AML) have been modestly effective in patients and are associated with poor long-term survival (<30% at 5 years). Viral vector-based suicide gene therapy is an attractive option, if these vectors can target the AML cells with high specificity and efficiency. In this study, we have developed a receptor-specific adeno-associated virus (AAV) based vector to target the CD33 antigen which is overexpressed in leukemic cells. A targeting peptide was rationally designed from the antigen-binding regions of a CD33 monoclonal antibody. This peptide was further expressed on the capsid of the AAV6 vector, since this serotype was most efficient among AAV1-rh10 vectors to infect the pro-monocytic, human myeloid leukemia cells (U937). AAV6-CD33 vectors expressing a suicide gene, the inducible caspase 9 (iCasp9), and its prodrug AP20187 significantly reduced (∼59%) the viability of U937 cells. To further test its efficacy and specificity in vivo, AAV6-CD33 vectors were administered into a xenotransplantation model of AML in zebrafish through systemic delivery. We observed a significant antileukemic effect with AAV6-CD33 vectors, with a markedly higher survival (100% for AAV6-CD33 vectors vs 15% for mock-treated) and a higher number of TUNEL positive apoptotic cells after systemic vector delivery. Taken together, our work demonstrates the efficacy and translational potential of CD33-targeted AAV6 vectors for cytotoxic gene therapy in AML.


Assuntos
Caspase 9/genética , Dependovirus/genética , Genes Transgênicos Suicidas/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Leucemia Mieloide Aguda/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Peixe-Zebra
6.
Bioconjug Chem ; 30(6): 1754-1762, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31181889

RESUMO

Current treatment approaches for hepatocellular carcinoma (HCC) have a narrow therapeutic index and alternate modes of treatment are thus required. We have utilized a gene delivery vector containing inducible caspase 9 (iCasp9) gene, which is a synthetic analogue based on the mammalian caspase 9 and fused to a human FK506 binding protein that allows its conditional dimerization to a synthetic, small molecule [chemical inducer of dimerization, AP20187] and results in target cell apoptosis. In our studies, we have tested these synthetic vectors based on an adeno-associated virus platform for their potential anti-tumorigenic effect in human HCC cells in vitro and in a HCC tumor model developed in nude mice. Our data demonstrates that the iCasp9-AP20187 bioconjugate is able to trigger terminal effectors of cellular apoptosis and presents a viable approach for the potential treatment of HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Caspase 9/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/uso terapêutico , Neoplasias Hepáticas/terapia , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Terapia Genética , Vetores Genéticos/genética , Humanos , Neoplasias Hepáticas/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Ligação a Tacrolimo/genética
7.
Mol Pharm ; 16(11): 4738-4750, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31596095

RESUMO

Recombinant adeno-associated virus (AAV)-based gene therapy has been promising, but several host-related transduction or immune challenges remain. For this mode of therapy to be widely applicable, it is crucial to develop high transduction and permeating vectors that infect the target at significantly low doses. Because glycosylation of capsid proteins is known to be rate limiting in the life cycle of many viruses, we reasoned that perturbation of glycosylation sites in AAV2 capsid will enhance gene delivery. In our first set experiments, pharmacological modulation of the glycosylation status in host cells, modestly decreased (1-fold) AAV2 packaging efficacy while it improved their gene expression (∼74%) in vitro. We then generated 24 mutant AAV2 vectors modified to potentially create or disrupt a glycosylation site in its capsid. Three of them demonstrated a 1.3-2.5-fold increase in transgene expression in multiple cell lines (HeLa, Huh7, and ARPE-19). Hepatic gene transfer of these vectors in hemophilia B mice, resulted in a 2-fold increase in human coagulation factor (F)IX levels, while its T/B-cell immunogenic response was unaltered. Subsequently, intravitreal gene transfer of glycosylation site-modified vectors in C57BL6/J mice demonstrated an increase in green fluorescence protein expression (∼2- to 4-fold) and enhanced permeation across retina. Subretinal administration of these modified vectors containing RPE65 gene further rescued the photoreceptor response in a murine model of Leber congenital amarousis. Our studies highlight the translational potential of glycosylation site-modified AAV2 vectors for hepatic and ocular gene therapy applications.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Hemofilia A/genética , Degeneração Retiniana/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Hemofilia A/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Degeneração Retiniana/metabolismo , Transdução Genética/métodos , Transgenes/genética
9.
BMC Biotechnol ; 18(1): 70, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384832

RESUMO

BACKGROUND: Recombinant adeno-associated viruses (AAVs) are emerging as favoured transgene delivery vectors for both research applications and gene therapy. In this context, a thorough investigation of the potential of various AAV serotypes to transduce specific cell types is valuable. Here, we rigorously tested the infectivity of a number of AAV serotypes in murine testis by direct testicular injection. RESULTS: We report the tropism of serotypes AAV2, 5, 8, 9 and AAVrh10 in mouse testis. We reveal unique infectivity of AAV2 and AAV9, which preferentially target intertubular testosterone-producing Leydig cells. Remarkably, AAV2 TM, a mutant for capsid designed to increase transduction, displayed a dramatic alteration in tropism; it infiltrated seminiferous tubules unlike wildtype AAV2 and transduced Sertoli cells. However, none of the AAVs tested infected spermatogonial cells. CONCLUSIONS: In spite of direct testicular injection, none of the tested AAVs appeared to infect sperm progenitors as assayed by reporter expression. This lends support to the current view that AAVs are safe gene-therapy vehicles. However, testing the presence of rAAV genomic DNA in germ cells is necessary to assess the risk of individual serotypes.


Assuntos
Dependovirus/fisiologia , Terapia Genética/instrumentação , Vetores Genéticos/fisiologia , Testículo/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/classificação , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células Intersticiais do Testículo/virologia , Masculino , Camundongos , Sorogrupo , Tropismo Viral
10.
Eur J Immunol ; 46(1): 154-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26443873

RESUMO

Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy.


Assuntos
Dependovirus/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Fígado/imunologia , NF-kappa B/antagonistas & inibidores , Poli(ADP-Ribose) Polimerases/imunologia , Animais , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Terapia Genética/métodos , Vetores Genéticos/imunologia , Células HeLa , Hemofilia B/terapia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Poli(ADP-Ribose) Polimerase-1 , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética , Transfecção
11.
J Virol ; 89(2): 952-61, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25355884

RESUMO

UNLABELLED: We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573-580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668-1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo. The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE: The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy.


Assuntos
Dependovirus/genética , Expressão Gênica , Vetores Genéticos , Hepatócitos/virologia , Transgenes , Animais , Linhagem Celular , Dependovirus/fisiologia , Terapia Genética/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Deleção de Sequência , Montagem de Vírus
12.
Int J Mol Sci ; 17(4): 492, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070581

RESUMO

The development of arthropathy is a major co-morbidity in patients with hemophilia. The present study was designed to study the role of a microRNA biomarker (miR-15b) in the development of joint disease. To investigate the expression profile of miR-15b during the development of arthropathy, we first isolated and studied small RNA from the acute and chronic hemarthrosis model of hemophilia A mice. We observed that miR-15b was consistently repressed (~1- to 4-fold) from the onset of joint bleeding (1, 3, 7 and 24 h) until six bleeding episodes (up to 90 days). To test if reconstitution of miR-15b modulates biomarkers of joint damage in a chronic hemarthrosis model, we administered an adeno-associated virus (AAV) 5-miR-15b vector intra-articularly alone or in combination with systemic administration of AAV2-factor VIII. miR-15b overexpression downregulated markers of angiogenesis and hypoxia (vascular epithelial growth factor α (VEGF-α) and hypoxia inducing factor 2α (HIF-2α), ~70% and ~34%, respectively) in the affected joints. In addition, the co-administration of miR-15b and factor VIII vectors reduced the levels of the chondrodegenerative matrix-metalloproteinases (MMPs) 1, 3, 9 and 14 (~14% to 60%) in the injured joints. These data demonstrate for the first time the role of a miR-15b in the development of hemophilic arthropathy and has implications in development of miR based therapies for joint disease.


Assuntos
Hemofilia A/complicações , Hemofilia A/genética , Artropatias/etiologia , Artropatias/genética , MicroRNAs/genética , Animais , Regulação da Expressão Gênica , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transgenes
13.
Rev Med Virol ; 23(6): 399-413, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24023004

RESUMO

AAV-based gene transfer protocols have shown remarkable success when directed to immune-privileged sites such as for retinal disorders like Lebers congenital amaurosis. In contrast, AAV-mediated gene transfer into liver or muscle tissue for diseases such as hemophilia B, α1 anti-trypsin deficiency and muscular dystrophy has demonstrated a decline in gene transfer efficacy over time. It is now known that in humans, AAV triggers specific pathways that recruit immune sensors. These factors initiate an immediate reaction against either the viral capsid or the vector encoded protein as part of innate immune response or to produce a more specific adaptive response that generates immunological memory. The vector-transduced cells are then rapidly destroyed due to this immune activation. However, unlike other viral vectors, AAV is not immunogenic in murine models. Its immunogenicity becomes apparent only in large animal models and human subjects. Moreover, humans are natural hosts to AAV and exhibit a high seroprevalence against AAV vectors. This limits the widespread application of AAV vectors into patients with pre-existing neutralising antibodies or memory T cells. To address these issues, various strategies are being tested. Alternate serotype vectors (AAV1-10), efficient expression cassettes, specific tissue targeting, immune-suppression and engineered capsid variants are some approaches proposed to minimise this immune stimulation. In this review, we have summarised the nature of the immune response documented against AAV in various pre-clinical and clinical settings and have further discussed the strategies to evade them.


Assuntos
Dependovirus/imunologia , Portadores de Fármacos , Terapia Genética/métodos , Vetores Genéticos/imunologia , Imunidade Adaptativa , Infecções por Adenoviridae/imunologia , Animais , Anticorpos Antivirais/sangue , Dependovirus/genética , Humanos , Imunidade Inata , Estudos Soroepidemiológicos
14.
Proc Natl Acad Sci U S A ; 108(9): 3743-8, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21321191

RESUMO

Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Imunidade/genética , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/virologia , Sítios de Ligação , Citocinas/metabolismo , Dependovirus/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Imunidade/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Camundongos , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/virologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Sequências Repetidas Terminais/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transgenes
15.
ACS Omega ; 9(28): 30945-30953, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035883

RESUMO

Suicide gene therapy is a promising strategy for the potential treatment of hepatocellular carcinoma (HCC). However, the lack of high transduction efficiency and targeted vectors in delivering the suicide genes to only the HCC cells is a major impediment. In the present study, we utilized an adeno-associated virus serotype 6 (AAV6) and its exosomal counterpart (exo-AAV) comprising of an inducible Caspase 9 (iCasp9) gene under the control of different promoter systems for targeting HCC cells. We employed a ubiquitous cytomegalovirus immediate early enhancer/chicken ß actin promoter (CAG), a liver-specific promoter (LP1), and a baculoviral IAP repeat-containing protein 5 (BIRC5) promoter for liver and cancer cell-specific expression of iCasp9, respectively. We further evaluated these vectors in Huh7 cells for their ability to kill the target cells. BIRC5 and LP1 promoter-driven iCasp9 vectors demonstrated superior cytotoxicity when compared to CAG promoter-driven iCasp9 vectors. Further validation in a murine model of HCC demonstrated that the LP1-iCasp9 or Birc5-iCasp9-based AAV6 vectors contributed to tumor regression (∼2 fold) as effectively as the AAV6-CAG-iCasp9 vectors (∼1.9 fold). Similarly, exo-AAV6 vectors showed ∼2.1 to 2.8 fold superior in vivo tumor regression when compared to mock-treated animals. Our study has developed two novel promoters (LP1 or BIRC5) whose efficacy is comparable to a strong ubiquitous promoter in both AAV and exo-AAV systems. This expands the toolkit of AAV vectors for safe and effective treatment of HCC.

16.
Thromb Res ; 238: 151-160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718473

RESUMO

It is crucial to develop a long-term therapy that targets hemophilia A and B, including inhibitor-positive patients. We have developed an Adeno-associated virus (AAV) based strategy to integrate the bypass coagulation factor, activated FVII (murine, mFVIIa) gene into the Rosa26 locus using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 mediated gene-editing. AAV vectors designed for expression of guide RNA (AAV8-gRNA), Cas9 (AAV2 neddylation mutant-Cas9), and mFVIIa (AAV8-mFVIIa) flanked by homology arms of the target locus were validated in vitro. Hemophilia B mice were administered with AAV carrying gRNA, Cas9 (1 × 1011 vgs/mouse), and mFVIIa with homology arms (2 × 1011 vgs/mouse) with appropriate controls. Functional rescue was documented with suitable coagulation assays at various time points. The data from the T7 endonuclease assay revealed a cleavage efficiency of 20-42 %. Further, DNA sequencing confirmed the targeted integration of mFVIIa into the safe-harbor Rosa26 locus. The prothrombin time (PT) assay revealed a significant reduction in PT in mice that received the gene-editing vectors (22 %), and a 13 % decline in mice that received only the AAV-FVIIa when compared to mock treated mice, 8 weeks after vector administration. Furthermore, FVIIa activity in mice that received triple gene-editing vectors was higher (122.5mIU/mL vs 28.8mIU/mL) than the mock group up to 15 weeks post vector administration. A hemostatic challenge by tail clip assay revealed that hemophilia B mice injected with only FVIIa or the gene-editing vectors had significant reduction in blood loss. In conclusion, AAV based gene-editing facilitates sustained expression of coagulation FVIIa and phenotypic rescue in hemophilia B mice.


Assuntos
Dependovirus , Modelos Animais de Doenças , Hemofilia B , Animais , Hemofilia B/terapia , Hemofilia B/genética , Dependovirus/genética , Camundongos , Fenótipo , Edição de Genes/métodos , Hemorragia/genética , Hemorragia/terapia , Fator VIIa , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Vetores Genéticos , Sistemas CRISPR-Cas , Engenharia Genética/métodos
17.
Stem Cell Res ; 77: 103413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631180

RESUMO

Leber Congenital Amaurosis 2 is an early onset retinal dystrophy that occurs due to mutation in RPE65 gene. Here, we report the generation of two patient specific induced pluripotent stem cell lines harboring nonsense mutations in exon 7 (c.646A > T) and exon 9 (c.992G > A) of RPE65 gene, respectively, which leads to premature translational termination and formation of defective protein. These lines were generated by the reprogramming of human dermal fibroblast cells using integration-free, episomal constructs expressing stemness genes. The stable lines maintained a normal karyotype, expressed the key stemness factors, underwent trilineage differentiation, and maintained their genetic identity and genomic integrity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Amaurose Congênita de Leber , cis-trans-Isomerases , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Mutação , Linhagem Celular , Diferenciação Celular , Masculino , Fibroblastos/metabolismo , Feminino
18.
Cytotherapy ; 15(8): 986-98, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23830234

RESUMO

BACKGROUND AIMS: Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. METHODS: We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. RESULTS: We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. CONCLUSIONS: These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.


Assuntos
Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transdução Genética/métodos , Animais , Antígenos CD34/metabolismo , Linhagem Celular , Dependovirus , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Células K562 , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
19.
Mol Ther Methods Clin Dev ; 31: 101166, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38149057

RESUMO

Breast carcinoma has one of the highest incidence rates (11.7%), with significant clinical heterogeneity. Although conventional chemotherapy and surgical resection are the current standard of care, the resistance and recurrence, after these interventions, necessitate alternate therapeutic approaches. Cancer gene therapy for breast cancer with the suicide gene is an attractive option due to their directed delivery into the tumor. In this study, we have developed a novel treatment strategy against breast cancer with recombinant adeno-associated virus (AAV) serotype 6 vectors carrying a suicide gene, inducible Caspase 9 (iCasp9). Upon treatment with AAV6-iCasp9 vectors and the chemical inducer of dimerizer, AP20187, the viability of murine breast cancer cells (4T1) was significantly reduced to ∼40%-60% (mock control 100%). Following intratumoral delivery of AAV6-iCasp9 vectors in an orthotopic breast cancer mouse model, we observed a significant increase in iCasp9 transgene expression and a significant reduction in tumor growth rate. At the molecular level, immunohistochemical analysis demonstrated subsequent activation of the effector caspase 3 and cellular death. These data highlight the potential of AAV6-iCasp9-based suicide gene therapy for aggressive breast cancer in patients.

20.
Thromb Res ; 231: 8-16, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741049

RESUMO

Hemophilic arthropathy (HA) due to repeated bleeding into the joint cavity is a major cause of morbidity in patients with hemophilia. The molecular mechanisms contributing to this condition are not well characterized. MicroRNAs (miRs) are known to modulate the phenotype of multiple joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Since miR125a is known to modulate disease progression in OA and RA, we performed a targeted screen of miR125a-5p and its target genes in a murine model of chronic HA. A digital PCR analysis demonstrated significant downregulation of miR125a-5p (2-fold vs control joint). Further molecular evaluation revealed elevated expression of the immunological markers STAT1 (7.6-fold vs control joint) and TRAF6 (10.6 fold vs control joint), which are direct targets of miR125a-5p. We then studied the impact of targeted overexpression of miR125a-5p using an Adeno-associated virus (AAV) vector in modulating the molecular mediators of HA. AAV5-miR125a vectors were administered intra-articularly either alone or in combination with a low dose of AAV8-based human factor 8 (F8) gene in a murine model of HA. We observed significantly increased expression of miR125a-5p in AAV5-miR125a administered mice (~12 fold vs injured joint) or in combination with AAV8-F8 vectors (~44 fold vs injured joint). The activity assay revealed ~17 %-20 % FVIII levels in mice that received low dose liver-directed F8 gene therapy. Further immunohistochemical analysis, demonstrated a decrease in inflammatory markers (STAT1 and TRAF6) and cartilage-degrading matrix metalloproteinases (MMPs) 3, 9, 13 in the joints of treated animals. These data highlight the crucial role of miR125a-5p in the development of HA.


Assuntos
Hemofilia A , Artropatias , Humanos , Camundongos , Animais , Fator VIII/genética , Fator VIII/uso terapêutico , Fator VIII/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Modelos Animais de Doenças , Artropatias/genética , Hemofilia A/complicações , Hemofilia A/genética , Hemofilia A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA