Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Heredity (Edinb) ; 130(5): 269-277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944856

RESUMO

Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.


Assuntos
DNA Mitocondrial , Genômica , Humanos , Animais , Polônia , Filogenia , DNA Mitocondrial/genética , Arvicolinae/genética , Variação Genética
2.
Proc Biol Sci ; 289(1970): 20212636, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35232238

RESUMO

There are several mechanisms that allow plants to temporarily escape from top-down control. One of them is trophic cascades triggered by top predators or pathogens. Another is satiation of consumers by mast seeding. These two mechanisms have traditionally been studied in separation. However, their combined action may have a greater effect on plant release than either process alone. In 2015, an outbreak of a disease (African swine fever, ASF) caused a crash in wild boar (Sus scrofa) abundance in Bialowieza Primeval Forest. Wild boar are important consumers of acorns and are difficult to satiate relative to less mobile granivores. We hypothesized that the joint action of the ASF outbreak and masting would enhance regeneration of oaks (Quercus robur). Data from ungulate exclosures demonstrated that ASF led to reduction in acorn predation. Tree seedling data indicated that oak recruitment increased twofold relative to pre-epidemic period. Our results showed that perturbations caused by wildlife disease travel through food webs and influence forest dynamics. The outbreak of ASF acted synergistically with masting and removed herbivore top-down control of oaks by mobile consumers. This illustrates that the ASF epidemic that currently occurs across Europe can have broad effects on forest dynamics.


Assuntos
Febre Suína Africana , Doenças Transmissíveis Emergentes , Quercus , Animais , Florestas , Sementes , Sus scrofa , Suínos , Árvores
3.
Mol Ecol ; 31(18): 4851-4865, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822863

RESUMO

Glacial and interglacial periods throughout the Pleistocene have been substantial drivers of change in species distributions. Earlier analyses suggested that modern grey wolves (Canis lupus) trace their origin to a single Late Pleistocene Beringian population that expanded east and westwards, starting c. 25,000 years ago (ya). Here, we examined the demographic and phylogeographic histories of extant populations around the Bering Strait with wolves from two inland regions of the Russian Far East (RFE) and one coastal and two inland regions of North-western North America (NNA), genotyped for 91,327 single nucleotide polymorphisms. Our results indicated that RFE and NNA wolves had a common ancestry until c. 34,400 ya, suggesting that these populations started to diverge before the previously proposed expansion out of Beringia. Coastal and inland NNA populations diverged c. 16,000 ya, concordant with the minimum proposed date for the ecological viability of the migration route along the Pacific Northwest coast. Demographic reconstructions for inland RFE and NNA populations reveal spatial and temporal synchrony, with large historical effective population sizes that declined throughout the Pleistocene, possibly reflecting the influence of broadscale climatic changes across continents. In contrast, coastal NNA wolves displayed a consistently lower effective population size than the inland populations. Differences between the demographic history of inland and coastal wolves may have been driven by multiple ecological factors, including historical gene flow patterns, natural landscape fragmentation, and more recent anthropogenic disturbance.


Assuntos
Lobos , Animais , Evolução Biológica , DNA Mitocondrial/genética , Demografia , Fluxo Gênico , Filogenia , Filogeografia , Lobos/genética
4.
New Phytol ; 214(1): 158-168, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27893157

RESUMO

Plant biomass consumers (mammalian herbivory and fire) are increasingly seen as major drivers of ecosystem structure and function but the prevailing paradigm in temperate forest ecology is still that their dynamics are mainly bottom-up resource-controlled. Using conceptual advances from savanna ecology, particularly the demographic bottleneck model, we present a novel view on temperate forest dynamics that integrates consumer and resource control. We used a fully factorial experiment, with varying levels of ungulate herbivory and resource (light) availability, to investigate how these factors shape recruitment of five temperate tree species. We ran simulations to project how inter- and intraspecific differences in height increment under the different experimental scenarios influence long-term recruitment of tree species. Strong herbivore-driven demographic bottlenecks occurred in our temperate forest system, and bottlenecks were as strong under resource-rich as under resource-poor conditions. Increased browsing by herbivores in resource-rich patches strongly counteracted the increased escape strength of saplings in these patches. This finding is a crucial extension of the demographic bottleneck model which assumes that increased resource availability allows plants to more easily escape consumer-driven bottlenecks. Our study demonstrates that a more dynamic understanding of consumer-resource interactions is necessary, where consumers and plants both respond to resource availability.


Assuntos
Florestas , Herbivoria/fisiologia , Mamíferos/fisiologia , Árvores/fisiologia , Animais , Simulação por Computador , Geografia , Modelos Teóricos , Polônia , Especificidade da Espécie
5.
Genome Res ; 21(8): 1294-305, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21566151

RESUMO

High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.


Assuntos
Evolução Biológica , Canidae/genética , Genoma , Animais , Coiotes/genética , Cães/genética , Evolução Molecular , Genótipo , Haplótipos , Hibridização Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Lobos/genética
6.
Acta Theriol (Warsz) ; 58: 403-413, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244044

RESUMO

Population densities of large herbivores are determined by the diverse effects of density-dependent and independent environmental factors. In this study, we used the official 1998-2003 inventory data on ungulate numbers from 462 forest districts and 23 national parks across Poland to determine the roles of various environmental factors in shaping country-wide spatial patterns of ungulate abundances. Spatially explicit generalized additive mixed models showed that different sets of environmental variables explained 39 to 50 % of the variation in red deer Cervus elaphus, wild boar Sus scrofa, and roe deer Capreolus capreolus abundances. For all of the studied species, low forest cover and the mean January temperature were the most important factors limiting their numbers. Woodland cover above 40-50 % held the highest densities for these species. Wild boar and roe deer were more numerous in deciduous or mixed woodlands within a matrix of arable land. Furthermore, we found significant positive effects of marshes and water bodies on wild boar abundances. A juxtaposition of obtained results with ongoing environmental changes (global warming, increase in forest cover) may indicate future growth in ungulate distributions and numbers.

7.
Ecol Evol ; 12(5): e8931, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600675

RESUMO

To provide the most comprehensive picture of species phylogeny and phylogeography of European roe deer (Capreolus capreolus), we analyzed mtDNA control region (610 bp) of 1469 samples of roe deer from Central and Eastern Europe and included into the analyses additional 1541 mtDNA sequences from GenBank from other regions of the continent. We detected two mtDNA lineages of the species: European and Siberian (an introgression of C. pygargus mtDNA into C. capreolus). The Siberian lineage was most frequent in the eastern part of the continent and declined toward Central Europe. The European lineage contained three clades (Central, Eastern, and Western) composed of several haplogroups, many of which were separated in space. The Western clade appeared to have a discontinuous range from Portugal to Russia. Most of the haplogroups in the Central and the Eastern clades were under expansion during the Weichselian glacial period before the Last Glacial Maximum (LGM), while the expansion time of the Western clade overlapped with the Eemian interglacial. The high genetic diversity of extant roe deer is the result of their survival during the LGM probably in a large, contiguous range spanning from the Iberian Peninsula to the Caucasus Mts and in two northern refugia.

8.
Acta Theriol (Warsz) ; 56(1): 91-101, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21350594

RESUMO

Determining ecological corridors is crucial for conservation efforts in fragmented habitats. Commonly employed least cost path (LCP) analysis relies on the underlying cost matrix. By using Ecological Niche Factor Analysis, we minimized the problems connected with subjective cost assessment or the use of presence/absence data. We used data on the wolf presence/absence in Poland to identify LCPs connecting patches of suitable wolf habitat, factors that influence patch occupancy, and compare LCPs between different genetic subpopulations. We found that a lower proportion of cities and roads surrounds the most densely populated patches. Least cost paths between areas where little dispersal takes place (i.e., leading to unpopulated patches or between different genetic subpopulations) ran through a higher proportion of roads and human settlements. They also crossed larger maximal distances over deforested areas. We propose that, apart from supplying the basis for direct conservation efforts, LCPs can be used to determine what factors might facilitate or hinder dispersal by comparing different subsets of LCPs. The methods employed can be widely applicable to gain more in-depth information on potential dispersal barriers for large carnivores.

9.
Acta Theriol (Warsz) ; 56(1): 1-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21350595

RESUMO

European red deer are known to show a conspicuous phylogeographic pattern with three distinct mtDNA lineages (western, eastern and North-African/Sardinian). The western lineage, believed to be indicative of a southwestern glacial refuge in Iberia and southern France, nowadays covers large areas of the continent including the British Isles, Scandinavia and parts of central Europe, while the eastern lineage is primarily found in southeast-central Europe, the Carpathians and the Balkans. However, large parts of central Europe and the whole northeast of the continent were not covered by previous analyses. To close this gap, we produced mtDNA control region sequences from more than 500 red deer from Denmark, Germany, Poland, Lithuania, Belarus, Ukraine and western Russia and combined our data with sequences available from earlier studies to an overall sample size of almost 1,100. Our results show that the western lineage extends far into the European east and is prominent in all eastern countries except for the Polish Carpathians, Ukraine and Russia where only eastern haplotypes occurred. While the latter may actually reflect the natural northward expansion of the eastern lineage after the last ice age, the present distribution of the western lineage in eastern Europe may in large parts be artificial and a result of translocations and reintroduction of red deer into areas where the species became extinct in historical times.

10.
Sci Rep ; 11(1): 9680, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958636

RESUMO

The wild boar Sus scrofa is one of the widely spread ungulate species in Europe, yet the origin and genetic structure of the population inhabiting Central and Eastern Europe are not well recognized. We analysed 101 newly obtained sequences of complete mtDNA genomes and 548 D-loop sequences of the species and combined them with previously published data. We identified five phylogenetic clades in Europe with clear phylogeographic pattern. Two of them occurred mainly in western and central part of the continent, while the range of the third clade covered North-Eastern, Central and South-Eastern Europe. The two other clades had rather restricted distribution. In Central Europe, we identified a contact zone of three mtDNA clades. Population genetic structure reflected clear phylogeographic pattern of wild boar in this part of Europe. The contribution of lineages originating from the southern (Dinaric-Balkan) and eastern (northern cost of the Black Sea) areas to the observed phylogeographic pattern of the species in Central and Eastern Europe was larger than those from the regions located in southern France, Iberian, and Italian Peninsulas. The present work was the first mitogenomic analysis conducted in Central and Eastern Europe to study genetic diversity and structure of wild boar population.


Assuntos
Filogeografia , Sus scrofa/classificação , Animais , Demografia , Europa (Continente) , Variação Genética , Genoma Mitocondrial , Sus scrofa/genética
11.
BMC Evol Biol ; 10: 104, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20409299

RESUMO

BACKGROUND: While it is generally accepted that patterns of intra-specific genetic differentiation are substantially affected by glacial history, population genetic processes occurring during Pleistocene glaciations are still poorly understood. In this study, we address the question of the genetic consequences of Pleistocene glaciations for European grey wolves. Combining our data with data from published studies, we analysed phylogenetic relationships and geographic distribution of mitochondrial DNA haplotypes for 947 contemporary European wolves. We also compared the contemporary wolf sequences with published sequences of 24 ancient European wolves. RESULTS: We found that haplotypes representing two haplogroups, 1 and 2, overlap geographically, but substantially differ in frequency between populations from south-western and eastern Europe. A comparison between haplotypes from Europe and other continents showed that both haplogroups are spread throughout Eurasia, while only haplogroup 1 occurs in contemporary North American wolves. All ancient wolf samples from western Europe that dated from between 44,000 and 1,200 years B.P. belonged to haplogroup 2, suggesting the long-term predominance of this haplogroup in this region. Moreover, a comparison of current and past frequencies and distributions of the two haplogroups in Europe suggested that haplogroup 2 became outnumbered by haplogroup 1 during the last several thousand years. CONCLUSIONS: Parallel haplogroup replacement, with haplogroup 2 being totally replaced by haplogroup 1, has been reported for North American grey wolves. Taking into account the similarity of diets reported for the late Pleistocene wolves from Europe and North America, the correspondence between these haplogroup frequency changes may suggest that they were associated with ecological changes occurring after the Last Glacial Maximum.


Assuntos
DNA Mitocondrial/genética , Lobos/classificação , Lobos/genética , Animais , Europa (Continente) , Filogenia
12.
PLoS One ; 15(10): e0237243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035231

RESUMO

Our understanding of animal adaptations to human pressure is limited by the focus on rare taxa, despite that common species are more significant in shaping structure, function and service provision of ecosystems. Thus better understanding of their ecology and behavioural adjustments is central for drafting conservation actions. In this study, we used radio-telemetry on 21 individuals (10 females, 11 males) to provide data on spatial ecology, habitat selection and use of roosts of one of the commonest species, the whiskered bat (Myotis mystacinus), inhabiting the Carpathian Mountains (southern Poland). We tested, whether this species prefers natural over human-modified landscapes to seek prey and roosts. Mean home range size of the whiskered bat in the Carpathian Mountains was 26.3 ha (SE ± 3.2, Local Convex Hull) and 110 ha (SE ± 22.1, Minimum Convex Polygon with all locations), and included between one and three patches, among which bats moved along linear environmental features, such as scrubby banks of streams or lines of trees. During foraging whiskered bats selected small woodlands within agricultural landscapes, avoided large mountain forests and open areas, and used built-up areas proportionally to their availability. Whiskered bats occupied roosts located mainly in buildings (>97%), at an average altitude of 547.9 m above sea level (SE ± 8.3). Roosts were used for 5.4 days, on average. Our study shows that whiskered bats adapted well to the mosaic of semi-natural and anthropogenic habitats. It highlights the importance of buildings serving as roosts and small woodlands used as foraging areas in human-dominated montane landscapes.


Assuntos
Quirópteros/fisiologia , Adaptação Fisiológica , Animais , Conservação dos Recursos Naturais , Ecossistema , Feminino , Florestas , Comportamento de Retorno ao Território Vital/fisiologia , Humanos , Masculino , Polônia
13.
PLoS One ; 14(5): e0216361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31067251

RESUMO

We analysed a fragment (247 bp) of cytochrome b of mitochondrial DNA sequenced using 353 samples of yellow-necked mice Apodemus flavicollis trapped in seven forests and along three woodlot transects in north-eastern Poland. Our aims were to identify the phylogeographic pattern and mtDNA structure of the population and to evaluate the role of environmental conditions in shaping the spatial pattern of mtDNA diversity. We found out that three European haplogroups occurred sympatrically in north-eastern Poland. Inferences based on mtDNA haplotype distribution and frequency defined five subpopulations. The mtDNA-based structure of mice significantly correlated with winter temperature: frequency of Haplogroup 1 was positively, and that of Haplogroup 3 negatively correlated to mean temperature of January in the year of trapping. Synthesis of the published pan-European data on the species phylogeography also showed that the possibly 'thermophilous' Haplogroup 1 has the westernmost occurrence, whereas the more 'cold-resistant' Haplogroup 3 occurs much further to north-east than the other haplogroups. The observed patter may be a byproduct of the tight coevolution with nuclear genes, as we have earlier found that - in mice population in NE Poland - the spatial pattern of nuclear DNA was best explained by January temperature. Alternatively, the observed association of mitochondrial genetic variation with temperature is possible to be adaptive as cytochrome b is involved in the process of ATP production via oxidative phosphorylation.


Assuntos
DNA Mitocondrial/genética , Temperatura , Animais , Núcleo Celular/genética , Citocromos b/genética , Camundongos , Filogeografia , Polônia , Estações do Ano
14.
Ecol Evol ; 8(16): 8171-8186, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250693

RESUMO

The goal of this study, conducted in seven large woodlands and three areas with small woodlots in northeastern Poland in 2004-2008, was to infer genetic structure in yellow-necked mouse Apodemus flavicollis population and to evaluate the roles of environmental and population ecology variables in shaping the spatial pattern of genetic variation using 768 samples genotyped at 13 microsatellite loci. Genetic variation was very high in all studied regions. The primal genetic subdivision was observed between the northern and the southern parts of the study area, which harbored two major clusters and the intermediate area of highly admixed individuals. The probability of assignment of individual mice to the northern cluster increased significantly with lower temperatures of January and July and declined in regions with higher proportion of deciduous and mixed forests. Despite the detected structure, genetic differentiation among regions was very low. Fine-scale structure was shaped by the population density, whereas higher level structure was mainly shaped by geographic distance. Genetic similarity indices were highly influenced by mouse abundance (which positively correlated with the share of deciduous forests in the studied regions) and exhibited the greatest change between 0 and 1 km in the forests, 0 and 5 km in small woodlots. Isolation by distance pattern, calculated among regions, was highly significant but such relationship between genetic and geographic distance was much weaker, and held the linearity at very fine scale (~1.5 km), when analyses were conducted at individual level.

15.
PLoS One ; 12(5): e0176560, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489863

RESUMO

The survival of isolated small populations is threatened by both demographic and genetic factors. Large carnivores declined for centuries in most of Europe due to habitat changes, overhunting of their natural prey and direct persecution. However, the current rewilding trends are driving many carnivore populations to expand again, possibly reverting the erosion of their genetic diversity. In this study we reassessed the extent and origin of the genetic variation of the Italian wolf population, which is expanding after centuries of decline and isolation. We genotyped wolves from Italy and other nine populations at four mtDNA regions (control-region, ATP6, COIII and ND4) and 39 autosomal microsatellites. Results of phylogenetic analyses and assignment procedures confirmed in the Italian wolves a second private mtDNA haplotype, which belongs to a haplogroup distributed mostly in southern Europe. Coalescent analyses showed that the unique mtDNA haplotypes in the Italian wolves likely originated during the late Pleistocene. ABC simulations concordantly showed that the extant wolf populations in Italy and in south-western Europe started to be isolated and declined right after the last glacial maximum. Thus, the standing genetic variation in the Italian wolves principally results from the historical isolation south of the Alps.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genótipo , Lobos/genética , Animais , Genética Populacional , Haplótipos , Itália , Filogenia
16.
Ecol Evol ; 5(19): 4410-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26664688

RESUMO

Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.

17.
Oecologia ; 90(1): 27-36, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28312267

RESUMO

Wolf-ungulate interactions were studied in the pristine deciduous and mixed forests of the Bialowieza National Park in 1985-1989. The study period included two severe and two mild winters. The community of ungulates inhabiting Bialowieza National Park consisted of red deer Cervus elaphus, 55% of all ungulates; wild boar Sus scrofa, 42%; and roe deer Capreolus capreolus, moose Alces alces, and European bison Bison bonasus, about 1% each. The average size of red deer groups increased from 2.7 (SD 2.35) in spring and summer to 6.9 (SD 6.84) in autumn and winter. In winter the group size of red deer was positively correlated with the depth of snow cover and negatively correlated with the mean daily temperature. Average group size of wild boar did not change significantly between seasons; it was 6.8 (SD 5.16) in spring and summer and 5.7 (SD 4.67) in autumn and winter. Analysis of 144 wolf scats showed that wolves preyed selectively on red deer. In October-April, Cervidae (mostly red deer) constituted 91% of biomass consumed by wolves, while wild boar made up only 8%. In May-September deer formed 77% of prey biomass, and the share of wild boar increased to 22%. In all seasons of the year wolves selected juveniles from deer and boar populations: 61% of red deer and 94% of wild boar of determined age recovered from wolves' scats were young <1 year old. Analysis of 117 carcasses of ungulates found in Bialowieza National Park showed that predation was the predominant mortality factor for red deer (40 killed, 10 dead from causes other than predation) and roe deer (4 killed, none dead). Wild boar suffered most from severe winter conditions (8 killed, 56 dead). The percentage of ungulates that had died from undernutrition and starvation in the total mortality was proportional to the severity of winter.

18.
PLoS One ; 9(6): e99875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919178

RESUMO

Individuals can increase inclusive fitness benefits through a complex network of social interactions directed towards kin. Preferential relationships with relatives lead to the emergence of kin structures in the social system. Cohesive social groups of related individuals and female philopatry of wild boar create conditions for cooperation through kin selection and make the species a good biological model for studying kin structures. Yet, the role of kinship in shaping the social structure of wild boar populations is still poorly understood. In the present study, we investigated spatio-temporal patterns of associations and the social network structure of the wild boar Sus scrofa population in Bialowieza National Park, Poland, which offered a unique opportunity to understand wild boar social interactions away from anthropogenic factors. We used a combination of telemetry data and genetic information to examine the impact of kinship on network cohesion and the strength of social bonds. Relatedness and spatial proximity between individuals were positively related to the strength of social bond. Consequently, the social network was spatially and genetically structured with well-defined and cohesive social units. However, spatial proximity between individuals could not entirely explain the association patterns and network structure. Genuine, kin-targeted, and temporarily stable relationships of females extended beyond spatial proximity between individuals while males interactions were short-lived and not shaped by relatedness. The findings of this study confirm the matrilineal nature of wild boar social structure and show how social preferences of individuals translate into an emergent socio-genetic population structure.


Assuntos
Comportamento Animal/fisiologia , Sus scrofa/fisiologia , Animais , Feminino , Genética Populacional , Estrutura de Grupo , Masculino , Modelos Biológicos , Polônia , Sus scrofa/genética , Telemetria
19.
PLoS One ; 9(1): e84607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404177

RESUMO

Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in the Bialowieza Primeval Forest (Poland), whether perceived predation risk in red deer (Cervus elaphus) and wild boar (Sus scrofa) is related to habitat visibility or olfactory cues of a predator. We used camera traps in two different set-ups to record undisturbed ungulate behavior and fresh wolf (Canis lupus) scats as olfactory cue. Habitat visibility at fixed locations in deciduous old growth forest affected neither vigilance levels nor visitation rate and cumulative visitation time of both ungulate species. However, red deer showed a more than two-fold increase of vigilance level from 22% of the time present on control plots to 46% on experimental plots containing one wolf scat. Higher vigilance came at the expense of time spent foraging, which decreased from 32% to 12% while exposed to the wolf scat. These behavioral changes were most pronounced during the first week of the experiment but continuous monitoring of the plots suggested that they might last for several weeks. Wild boar did not show behavioral responses indicating higher perceived predation risk. Visitation rate and cumulative visitation time were not affected by the presence of a wolf scat in both ungulate species. The current study showed that perceived predation risk in red deer and wild boar is not related to habitat visibility in a dense forest ecosystem. However, olfactory cues of wolves affected foraging behavior of their preferred prey species red deer. We showed that odor of wolves in an ecologically equivalent dose is sufficient to create fine-scale risk factors for red deer.


Assuntos
Sinais (Psicologia) , Comportamento Predatório , Árvores , Lobos , Animais , Cervos , Ecossistema , Feminino , Masculino , Odorantes , Polônia , Densidade Demográfica
20.
PLoS One ; 9(10): e109147, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271423

RESUMO

We investigated contemporary and historical influences on the pattern of genetic diversity of European roe deer (Capreolus capreolus). The study was conducted in northeastern Poland, a zone where vast areas of primeval forests are conserved and where the European roe deer was never driven to extinction. A total of 319 unique samples collected in three sampling areas were genotyped at 16 microsatellites and one fragment (610 bp) of mitochondrial DNA (mtDNA) control region. Genetic diversity was high, and a low degree of genetic differentiation among sampling areas was observed with both microsatellites and mtDNA. No evidence of genetic differentiation between roe deer inhabiting open fields and forested areas was found, indicating that the ability of the species to exploit these contrasting environments might be the result of its phenotypic plasticity. Half of the studied individuals carried an mtDNA haplotype that did not belong to C. capreolus, but to a related species that does not occur naturally in the area, the Siberian roe deer (C. pygargus). No differentiation between individuals with Siberian and European mtDNA haplotypes was detected at microsatellite loci. Introgression of mtDNA of Siberian roe deer into the genome of European roe deer has recently been detected in eastern Europe. Such introgression might be caused by human-mediated translocations of Siberian roe deer within the range of European roe deer or by natural hybridization between these species in the past.


Assuntos
Cervos/genética , Hibridização Genética , Animais , Cervos/classificação , Variação Genética , Dados de Sequência Molecular , Filogenia , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA