Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(24): 13711-13726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34696708

RESUMO

SARS-CoV2 is a single-stranded RNA virus, gaining much attention after it out broke in China in December 2019. The virus rapidly spread to several countries around the world and caused severe respiratory illness to humans. Since the outbreak, researchers around the world have devoted maximum resources and effort to develop a potent vaccine that would offer protection to uninfected individuals against SARS-CoV2. Reverse vaccinology is a relatively new approach that thrives faster in vaccine research. In this study, we constructed Cytotoxic T Lymphocytes (CTL)-based multi-epitope vaccine using hybrid epitope prediction methods. A total of 121 immunogenic CTL epitopes were screened by various sequence-based prediction methods and docked with their respective HLA alleles using the AutoDock Vina v1.1.2. In all, 17 epitopes were selected based on their binding affinity, followed by the construction of multi-epitope vaccine by placing the appropriate linkers between the epitopes and tuberculosis heparin-binding hemagglutinin (HBHA) adjuvant. The final vaccine construct was modeled by the I-TASSER server and the best model was further validated by ERRAT, ProSA, and PROCHECK servers. Furthermore, the molecular interaction of the constructed vaccine with TLR4 was assessed by ClusPro 2.0 and PROtein binDIng enerGY prediction (PRODIGY) server. The immune simulation analysis confirms that the constructed vaccine was capable of inducing long-lasting memory T helper (Th) and CTL responses. Finally, the nucleotide sequence was codon-optimized by the JCAT tool and cloned into the pET21a (+) vector. The current results reveal that the candidate vaccine is capable of provoking robust CTL response against the SARS-CoV2.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Epitopos de Linfócito T , Linfócitos T Citotóxicos , RNA Viral , Vacinologia/métodos , Epitopos de Linfócito B , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas Virais/química , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Biologia Computacional/métodos
2.
Genes Dis ; 8(5): 629-639, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34291134

RESUMO

Autism is a heterogeneous neurodevelopmental and neuropsychiatric disorder with no precise etiology. Deficits in cognitive functions uncover at early stages and are known to have an environmental and genetic basis. Since autism is multifaceted and also linked with other comorbidities associated with various organs, there is a possibility that there may be a fundamental cellular process responsible for this. These reasons place mitochondria at the point of interest as it is involved in multiple cellular processes predominantly involving metabolism. Mitochondria encoded genes were taken into consideration lately because it is inherited maternally, has its own genome and also functions the time of embryo development. Various researches have linked mitochondrial mishaps like oxidative stress, ROS production and mt-DNA copy number variations to autism. Despite dramatic advances in autism research worldwide, the studies focusing on mitochondrial dysfunction in autism is rather minimal, especially in India. India, owing to its rich diversity, may be able to contribute significantly to autism research. It is vital to urge more studies in this domain as it may help to completely understand the basics of the condition apart from a genetic standpoint. This review focuses on the worldwide and Indian scenario of autism research; mitochondrial abnormalities in autism and possible therapeutic approaches to combat it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA