Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Soc Trans ; 49(3): 1099-1108, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34110361

RESUMO

RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme-RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme-RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme-RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme-RNA interactions in connecting intermediary metabolism and gene expression.


Assuntos
Enzimas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Enzimas/genética , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Proteoma/genética , RNA/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética
2.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751110

RESUMO

The numerous interconnected biochemical pathways that make up the metabolism of a living cell comprise a fuzzy logic system because of its high level of complexity and our inability to fully understand, predict, and model the many activities, how they interact, and their regulation. Each cell contains thousands of proteins with changing levels of expression, levels of activity, and patterns of interactions. Adding more layers of complexity is the number of proteins that have multiple functions. Moonlighting proteins include a wide variety of proteins where two or more functions are performed by one polypeptide chain. In this article, we discuss examples of proteins with variable functions that contribute to the fuzziness of cellular metabolism.


Assuntos
Metabolismo Energético , Lógica Fuzzy , Redes e Vias Metabólicas , Modelos Biológicos , Proteínas/metabolismo , Animais , Humanos , Ligação Proteica
3.
Biochem Soc Trans ; 47(6): 1941-1948, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31803903

RESUMO

During the past few decades, it's become clear that many enzymes evolved not only to act as specific, finely tuned and carefully regulated catalysts, but also to perform a second, completely different function in the cell. In general, these moonlighting proteins have a single polypeptide chain that performs two or more distinct and physiologically relevant biochemical or biophysical functions. This mini-review describes examples of moonlighting proteins that have been found within the past few years, including some that play key roles in human and animal diseases and in the regulation of biochemical pathways in food crops. Several belong to two of the most common subclasses of moonlighting proteins: trigger enzymes and intracellular/surface moonlighting proteins, but a few represent less often observed combinations of functions. These examples also help illustrate some of the current methods used for identifying proteins with multiple functions. In general, a greater understanding about the functions and molecular mechanisms of moonlighting proteins, their roles in the regulation of cellular processes, and their involvement in health and disease could aid in many areas including developing new antibiotics, predicting the functions of the millions of proteins being identified through genome sequencing projects, designing novel proteins, using biological circuitry analysis to construct bacterial strains that are better producers of materials for industrial use, and developing methods to tweak biochemical pathways for increasing yields of food crops.


Assuntos
Proteínas/metabolismo , Animais , Doença , Humanos
4.
Biochem Soc Trans ; 47(1): 371-379, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30710059

RESUMO

Pseudoenzymes are noncatalytic homologues of enzymes and are found in most enzyme families. Although lacking catalytic activity and sometimes referred to as 'dead' enzymes, they instead resemble phoenixes because the loss of a catalytic function during evolution was associated with the development of vital new functions. They are important in regulating the activity and location of catalytically active homologues, scaffolding the assembly of signaling complexes, and regulating transcription or translation. They are key actors in cell proliferation and differentiation, proteostasis, and many other biochemical pathways and processes. They perform their functions in diverse ways, but many retain some aspects of the function of their catalytically active homologues. In some pseudoenzymes, their functions are very different from other members of their protein families, suggesting some arose from ancient moonlighting proteins during evolution. Much less is known about pseudoenzymes than their catalytically active counterparts, but a growing appreciation of their key roles in many important biochemical processes and signaling pathways has led to increased investigation in recent years. It is clear that there is still much more to learn about the structures, functions, and cellular roles of these phoenix-like proteins.


Assuntos
Enzimas/metabolismo , Proteínas/metabolismo , Evolução Biológica , Catálise
5.
Proteomics ; 17(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517912

RESUMO

Bacteria use cell surface proteins and secreted proteins to interact with host tissues. Several dozen previously published proteomics studies have identified cell surface proteins for pathogens. In this issue, Celebioglu and Svensson (Proteomics 2017, 17, 1700019) use 2D gel electrophoresis and mass spectrometry to identify secreted and cell surface proteins of a commensual gut bacterium, Lactobacillus acidophilus NCFM. Some of the proteins are known to have functions in the cytoplasm, and their presence on the cell surface suggests they might be moonlighting proteins. In addition, comparisons of proteins used by pathogenic and probiotic species to interact with their hosts could lead to improved treatments of infections and chronic diseases that are associated with an imbalance of pathogenic and probiotic gut bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mucosa Intestinal/metabolismo , Lactobacillus acidophilus/metabolismo , Probióticos/metabolismo , Proteoma/metabolismo , Adesão Celular , Comunicação Celular , Interações Hospedeiro-Patógeno , Humanos
6.
Sci Prog ; 100(4): 363-373, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29113626

RESUMO

The human body is a complex biological machine with billions of cells and vast numbers of biochemical processes - but our genome only contains 22,000 protein-encoding genes. Moonlighting proteins provide one way to increase the number of cellular activities. Moonlighting proteins exhibit more than one physiologically relevant biochemical or biophysical function within one polypeptide chain. Already more than 300 moonlighting proteins have been identified, and they include a diverse set of proteins with a large variety of functions. This article discusses examples of moonlighting proteins, how one protein structure can perform two different functions, and how the multiple functions can be regulated. In addition to learning more about what our proteins do and how they work together in complex multilayered interaction networks and processes in our bodies, the study of moonlighting proteins can inform future synthetic biology projects in making proteins that perform new functions and new combinations of functions, for example, for synthesising new materials, delivering drugs into cells, and in bioremediation.


Assuntos
Proteínas/química , Animais , Bases de Dados de Proteínas , Humanos , Conformação Proteica , Mapas de Interação de Proteínas , Biologia Sintética
7.
Nucleic Acids Res ; 43(Database issue): D277-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324305

RESUMO

Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple biochemical functions that are not due to gene fusions, multiple RNA splice variants or pleiotropic effects. The known moonlighting proteins perform a variety of diverse functions in many different cell types and species, and information about their structures and functions is scattered in many publications. We have constructed the manually curated, searchable, internet-based MoonProt Database (http://www.moonlightingproteins.org) with information about the over 200 proteins that have been experimentally verified to be moonlighting proteins. The availability of this organized information provides a more complete picture of what is currently known about moonlighting proteins. The database will also aid researchers in other fields, including determining the functions of genes identified in genome sequencing projects, interpreting data from proteomics projects and annotating protein sequence and structural databases. In addition, information about the structures and functions of moonlighting proteins can be helpful in understanding how novel protein functional sites evolved on an ancient protein scaffold, which can also help in the design of proteins with novel functions.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Proteínas/fisiologia , Animais , Internet , Proteínas/genética
8.
Biochem Soc Trans ; 42(6): 1679-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399589

RESUMO

Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple physiologically relevant biochemical or biophysical functions. Almost 300 proteins have been found to moonlight. The known examples of moonlighting proteins include diverse types of proteins, including receptors, enzymes, transcription factors, adhesins and scaffolds, and different combinations of functions are observed. Moonlighting proteins are expressed throughout the evolutionary tree and function in many different biochemical pathways. Some moonlighting proteins can perform both functions simultaneously, but for others, the protein's function changes in response to changes in the environment. The diverse examples of moonlighting proteins already identified, and the potential benefits moonlighting proteins might provide to the organism, such as through coordinating cellular activities, suggest that many more moonlighting proteins are likely to be found. Continuing studies of the structures and functions of moonlighting proteins will aid in predicting the functions of proteins identified through genome sequencing projects, in interpreting results from proteomics experiments, in understanding how different biochemical pathways interact in systems biology, in annotating protein sequence and structure databases, in studies of protein evolution and in the design of proteins with novel functions.


Assuntos
Proteínas/fisiologia , Conformação Proteica , Proteínas/química
9.
Bioinform Adv ; 3(1): vbad074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521308

RESUMO

Summary: When the COVID-19 crisis shut down most undergraduate research opportunities, the Macromolecular Structure and Function Research Experiences for Undergraduates Program provided a mentored research experience on the topic of Macromolecular Structure and Function and training in professional skills to assist the participants in pursuing a degree and a future career in STEM. The fully online, remote, computer-based program was funded by the USA National Science Foundation. It involved faculty at four geographically distributed institutions specializing in diverse but complementary approaches to study macromolecular structure and function. Importantly, its online 'collaborate-from-home' format made it accessible to students during the pandemic to participate fully in the research, professional development and other activities of the program. This project can also serve as an example for future remote, online projects that would especially be helpful for students who do not have access to similar programs at their universities, cannot travel to attend a summer program, have physical challenges that make it difficult for them to work in a lab or students whose research opportunities are limited due to the war in Ukraine. The lessons learned with the Macromolecular Structure and Function REU program can provide helpful information for ISCB members to set up similar programs to serve additional students. Availability and implementation: More information and resources are available on the project web site http://jefferylab.moonlightingproteins.org. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Front Bioinform ; 3: 1222182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576715

RESUMO

In recent years, improvements in protein function prediction methods have led to increased success in annotating protein sequences. However, the functions of over 30% of protein-coding genes remain unknown for many sequenced genomes. Protein functions vary widely, from catalyzing chemical reactions to binding DNA or RNA or forming structures in the cell, and some types of functions are challenging to predict due to the physical features associated with those functions. Other complications in understanding protein functions arise due to the fact that many proteins have more than one function or very small differences in sequence or structure that correspond to different functions. We will discuss some of the recent developments in predicting protein functions and some of the remaining challenges.

11.
J Fungi (Basel) ; 9(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998912

RESUMO

Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.

12.
Integr Comp Biol ; 61(6): 2020-2030, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34180524

RESUMO

The connection between structure and function is one of the fundamental tenets of biology: a biological unit's structure determines its function, and, conversely, its function depends upon its structure. Historically, important advances have been made either when understanding of structure leads to questions about function or when understanding of function raises questions about the structures involved. Consequently, considering the connections between structure and function from a broader perspective might lead to the development of novel hypotheses that move our understanding of the fundamental connections between structure and function forward. Better integration of structure and function is a key component in the broader goal of reintegrating biology within and across scales. Here, we provide examples of how integrating studies of structure and function as well as comparing structure-function relationships across biological scales can lead to scientific advances. We also emphasize the potential of integrating studies of structure and function across scales for bio-inspired design and for improving biology education.


Assuntos
Biologia Computacional
13.
Proteins ; 79(1): 203-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21058398

RESUMO

Type I phosphomannose isomerases (PMIs) are zinc-dependent metalloenzymes involved in the reversible isomerization of D-mannose 6-phosphate (M6P) and D-fructose 6-phosphate (F6P). 5-Phospho-D-arabinonohydroxamic acid (5PAH), an inhibitor endowed with nanomolar affinity for yeast (Type I) and Pseudomonas aeruginosa (Type II) PMIs (Roux et al., Biochemistry 2004; 43:2926-2934), strongly inhibits human (Type I) PMI (for which we report an improved expression and purification procedure), as well as Escherichia coli (Type I) PMI. Its K(i) value of 41 nM for human PMI is the lowest value ever reported for an inhibitor of PMI. 5-Phospho-D-arabinonhydrazide, a neutral analogue of the reaction intermediate 1,2-cis-enediol, is about 15 times less efficient at inhibiting both enzymes, in accord with the anionic nature of the postulated high-energy reaction intermediate. Using the polarizable molecular mechanics, sum of interactions between fragments ab initio computed (SIBFA) procedure, computed structures of the complexes between Candida albicans (Type I) PMI and the cyclic substrate ß-D-mannopyranose 6-phosphate (ß-M6P) and between the enzyme and the high-energy intermediate analogue inhibitor 5PAH are reported. Their analysis allows us to identify clearly the nature of each individual active site amino acid and to formulate a hypothesis for the overall mechanism of the reaction catalyzed by Type I PMIs, that is, the ring-opening and isomerization steps, respectively. Following enzyme-catalyzed ring-opening of ß-M6P by zinc-coordinated water and Gln111 ligands, Lys136 is identified as the probable catalytic base involved in proton transfer between the two carbon atoms C1 and C2 of the substrate D-mannose 6-phosphate.


Assuntos
Manose-6-Fosfato Isomerase/antagonistas & inibidores , Manose-6-Fosfato Isomerase/química , Sequência de Aminoácidos , Ligação Competitiva , Candida albicans/enzimologia , Domínio Catalítico , Escherichia coli/enzimologia , Frutosefosfatos/química , Humanos , Hidrazinas/química , Ácidos Hidroxâmicos/química , Cinética , Manose-6-Fosfato Isomerase/biossíntese , Manosefosfatos/química , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Fosfatos Açúcares/química
14.
IUBMB Life ; 63(7): 489-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21698752

RESUMO

One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown.


Assuntos
Doença , Proteínas/metabolismo , Animais , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/genética
15.
BMC Biotechnol ; 10: 83, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114855

RESUMO

BACKGROUND: Transmembrane proteins (TM proteins) make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. RESULTS: Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY). All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%). In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. CONCLUSIONS: In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical characteristics. Surveys like this one could aid in overcoming the technical bottlenecks in working with TM proteins and could potentially aid in increasing the rate of structure determination.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Membrana/biossíntese , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sequência de Proteína
16.
FEBS J ; 287(19): 4141-4149, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534477

RESUMO

As more genome sequences are elucidated, there is an increasing need for information about the functions of the millions of proteins they encode. The function of a newly sequenced protein is often estimated by sequence alignment with the sequences of proteins with known functions. However, protein superfamilies can contain members that share significant amino acid sequence and structural homology yet catalyze different reactions or act on different substrates. Some homologous proteins differ by having a second or even third function, called moonlighting proteins. More recently, it was found that most protein superfamilies also include pseudoenzymes, a protein, or a domain within a protein, that has a three-dimensional fold that resembles a conventional catalytically active enzyme, but has no catalytic activity. In this review, we discuss several examples of protein families that contain enzymes, pseudoenzymes, and moonlighting proteins. It is becoming clear that pseudoenzymes and moonlighting proteins are widespread in the evolutionary tree, and in many protein families, and they are often very similar in sequence and structure to their monofunctional and catalytically active counterparts. A greater understanding is needed to clarify when similarities and differences in amino acid sequences and structures correspond to similarities and differences in biochemical functions and cellular roles. This information can help improve programs that identify protein functions from sequence or structure and assist in more accurate annotation of sequence and structural databases, as well as in our understanding of the broad diversity of protein functions.


Assuntos
Enzimas , Proteínas/classificação , Proteínas/metabolismo , Animais , Humanos , Proteínas/química , Proteínas/genética
17.
Proteins ; 74(1): 72-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18561188

RESUMO

Enzymes of glycolysis in Trypanosoma brucei have been identified as potential drug targets for African sleeping sickness because glycolysis is the only source of ATP for the bloodstream form of this parasite. Several inhibitors were previously reported to bind preferentially to trypanosomal phosphoglucose isomerase (PGI, the second enzyme in glycolysis) than to mammalian PGIs, which suggests that PGI might make a good target for species-specific drug design. Herein, we report recombinant expression, purification, crystallization and X-ray crystal structure determination of T. brucei PGI. One structure solved at 1.6 A resolution contains a substrate, D-glucose-6-phosphate, in an extended conformation in the active site. A second structure solved at 1.9 A resolution contains a citrate molecule in the active site. The structures are compared with the crystal structures of PGI from humans and from Leishmania mexicana. The availability of recombinant tPGI and its first high-resolution crystal structures are initial steps in considering this enzyme as a potential drug target.


Assuntos
Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato/química , Trypanosoma brucei brucei/enzimologia , Animais , Sítios de Ligação , Ácido Cítrico/química , Cristalografia por Raios X , Glucose-6-Fosfato Isomerase/isolamento & purificação , Humanos , Leishmania mexicana/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
18.
AIMS Microbiol ; 5(1): 77-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384704

RESUMO

The gut microbiota use proteins on their surface to form and maintain interactions with host cells and tissues. In recent years, many of these cell surface proteins have been found to be identical to intracellular enzymes and chaperones. When displayed on the cell surface these moonlighting proteins help the microbe attach to the host by interacting with receptors on the surface of host cells, components of the extracellular matrix, and mucin in the mucosal lining of the digestive tract. Binding of these proteins to the soluble host protein plasminogen promotes the conversion of plasminogen to an active protease, plasmin, which activates other host proteins that aid in infection and virulence. In this mini-review, we discuss intracellular/surface moonlighting proteins of pathogenic and probiotic bacteria and eukaryotic gut microbiota.

19.
Protein Sci ; 28(7): 1233-1238, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087733

RESUMO

In the cell, expression levels, allosteric modulators, post-translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.


Assuntos
Enzimas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Enzimas/genética , Regulação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética
20.
Philos Trans R Soc Lond B Biol Sci ; 373(1738)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203708

RESUMO

Members of the GroEL/HSP60 protein family have been studied for many years because of their critical roles as ATP-dependent molecular chaperones, so it might come as a surprise that some have important functions in ATP-poor conditions, for example, when secreted outside the cell. At least some members of each of the HSP10, HSP70, HSP90, HSP100 and HSP110 heat shock protein families are also 'moonlighting proteins'. Moonlighting proteins exhibit more than one physiologically relevant biochemical or biophysical function within one polypeptide chain. In this class of multifunctional proteins, the multiple functions are not due to gene fusions or multiple proteolytic fragments. Several hundred moonlighting proteins have been identified, and they include a diverse set of proteins with a large variety of functions. Some participate in multiple biochemical processes by using an active site pocket for catalysis and a different part of the protein's surface to interact with other proteins. Moonlighting proteins play a central role in many diseases, and the development of novel treatments would be aided by more information addressing current questions, for example, how some are targeted to multiple cellular locations and how a single function can be targeted by therapeutics without targeting a function not involved in disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.


Assuntos
Proteínas de Choque Térmico/genética , Animais , Eucariotos/genética , Eucariotos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA