Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Anal Bioanal Chem ; 415(13): 2523-2534, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36567330

RESUMO

The aim of this study was to track changes in the volatilome of cold-pressed oil and press cakes obtained from roasted seeds and to combine it with the profile of non-volatile metabolites in a single study, in order to understand pathways of volatile organic compound (VOC) formation caused by thermal processing. Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry was used for the analysis of VOCs in cold-pressed oils and corresponding press cakes obtained after roasting of seeds at 140 and 180 °C prior to pressing. Contents of primary metabolites (amino acids, saccharides, fatty acids) as well as selected secondary metabolites (glucosinolates, polyphenols) were determined, as many of them serve as precursors to volatile compounds formed especially in thermal reactions. After roasting, the formation of Maillard reaction products increased, which corresponded to the reduction of free amino acids and monosaccharides. Moreover, levels of the products of thermal oxidation of fatty acids, such as aldehydes and ketones, increased with the increasing temperature of roasting, although no significant changes were noted for fatty acids. Among sulphur-containing compounds, contents of the products and intermediates of methionine Strecker degradation increased significantly with the increasing temperature of roasting. Degradation of glucosinolates to nitriles occurred after thermal treatment. The results of this study confirmed that seed roasting before cold pressing has a significant effect on the volatiles, but also indicated roasting-induced changes in non-volatile metabolites of oil and press cake. Such an approach helps to understand metabolic changes occurring during rapeseed processing in cold-pressed oil production.


Assuntos
Glucosinolatos , Sementes , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Glucosinolatos/análise , Óleos de Plantas/química , Óleo de Brassica napus , Sementes/química , Temperatura Baixa
2.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138475

RESUMO

This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.


Assuntos
Análise de Alimentos , Resíduos de Praguicidas , Análise de Alimentos/métodos , Microextração em Fase Sólida/métodos , Extração em Fase Sólida , Polímeros Molecularmente Impressos
3.
J Sci Food Agric ; 103(12): 6080-6094, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144348

RESUMO

BACKGROUND: The present study aimed to demonstrate the superiority of bioethanol yield and its quality from sorghum using the granular starch degrading enzyme Stargen™ 002 over simultaneous saccharification and fermentation, and separate hydrolysis and fermentation using Zymomonas mobilis CCM 3881 and Ethanol Red® yeast. RESULTS: Bacteria were found to produce ethanol at higher yield than the yeast in all fermentations. The highest ethanol yield was obtained with Z. mobilis during 48 h of simultaneous saccharification and fermentation (83.85% theoretical yield) and fermentation with Stargen™ 002 (81.27% theoretical yield). Pre-liquefaction in fermentation with Stargen™ 002 did not improve ethanol yields for both Z. mobilis and Saccharomyces cerevisiae. Chromatographic analysis showed twice less total volatile compounds in distillates obtained after bacterial (3.29-5.54 g L-1 ) than after yeast (7.84-9.75 g L-1 ) fermentations. Distillates obtained after bacterial fermentation were characterized by high level of aldehydes (up to 65% of total volatiles) and distillates obtained after yeast fermentation of higher alcohols (up to 95% of total volatiles). The process of fermentation using granular starch hydrolyzing enzyme cocktail Stargen™ 002 resulted in low amounts of all volatile compounds in distillates obtained after bacterial fermentation, but the highest amounts in distillates obtained after yeast fermentation. CONCLUSION: The present study emphasizes the great potential of bioethanol production from sorghum with Z. mobilis using granular starch hydrolyzing enzyme Stargen™ 002, which leads to reduced water and energy consumption, especially when energy sources are strongly related to global climate change. © 2023 Society of Chemical Industry.


Assuntos
Sorghum , Zymomonas , Saccharomyces cerevisiae , Etanol , Fermentação , Amido
4.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144849

RESUMO

At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.


Assuntos
Agaricales , Inseticidas , Cisteína , Ésteres , Humanos , Isotiocianatos/análise , Nitrilas/análise , Odorantes , Compostos de Sulfidrila , Sulfetos , Sulfóxidos , Enxofre , Compostos de Enxofre/química , Verduras/química
5.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056815

RESUMO

The storage of plant samples as well as sample preparation for extraction have a significant impact on the profile of metabolites, however, these factors are often overlooked during experiments on vegetables or fruit. It was hypothesized that parameters such as sample storage (freezing) and sample pre-treatment methods, including the comminution technique or applied enzyme inhibition methods, could significantly influence the extracted volatile metabolome. Significant changes were observed in the volatile profile of broccoli florets frozen in liquid nitrogen at -20 °C. Those differences were mostly related to the concentration of nitriles and aldehydes. Confocal microscopy indicated some tissue deterioration in the case of slow freezing (-20 °C), whereas the structure of tissue, frozen in liquid nitrogen, was practically intact. Myrosinase activity assay proved that the enzyme remains active after freezing. No pH deviation was noted after sample storage - this parameter did not influence the activity of enzymes. Tissue fragmentation and enzyme-inhibition techniques applied prior to the extraction influenced both the qualitative and quantitative composition of the volatile metabolome of broccoli.


Assuntos
Brassica/metabolismo , Flores/metabolismo , Manipulação de Alimentos/métodos , Congelamento , Glicosídeo Hidrolases/metabolismo , Metaboloma , Compostos Orgânicos Voláteis/química , Brassica/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Armazenamento de Alimentos , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
6.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014366

RESUMO

The aim of this work was to study the possibility of using medicinal plants in combination with salt-containing raw materials from the Aral Sea region for cosmetic purposes. The chemical and mineralogical compositions of salts occurring in this region were studied for pharmacological and cosmetic purposes. The salt-containing raw materials were studied by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The microflora of saline-containing raw materials and flora of the Zhaksy-Klych lake were studied. Fifty-six plant species were identified, of which 25% belong to the Asteraceae family, 32% were Poaceae, 22% were Amaranthaceae, and 21% were Tamaricaceae. Using the solid-phase microextraction (SPME) method and comprehensive two-dimensional gas chromatography−mass spectrometry, the composition of volatile compounds in such plant species as Artemisia alba L., Achilleamillifolium L., Eleagus commutate Bernh. Ex Rydb., Psoraleadrupacea Bunge, Artemisia cipa O. Vegd., Thymus vulgaris L., Morus alba L., Salvia pratensis L., Glycyrhizaglabra L., Tanacetum vulgare L., Polygonumaviculare L., Alhagipseudoalhagi Gagnebin and Peganumharmala L., chosen on the basis of their herbal components for future cosmetic products, was determined. In total, 187 different volatile compounds were found in the endemic plant species Glycyrrhizaglabra L., of which the following were dominant: 1,7-octadiene-3-, 2,6-dimethyl- with a peak area of 4.71%; caryophyllenes; bicyclo[7.2.0]4,11,11-trimethyl-8-methylene-, [1R-(1R*,4E,9S*)]­3.70%; bicyclo[2.2.1] heptane-2-1,7,7-trimethyl-,(1S)­3.46%; cyclohexanone, 5-methyl-2-(1-methylethyledene)-; 2-isopropyledene-5­2.97%; menthol; cyclohexanol, 5-methyl-2-(1-methylethyl)-; p-menthane-3-ol; menthol alcohol; and 2-isopropyl-5­2.08%. The remaining compounds were detected in amounts of less than 2.0%. Tests of seven cosmetic compositions developed on the basis of plant extracts and salt-containing raw materials revealed that three samples had a moisturizing effect. Launching the production of cosmetic products in the Aral region will not only reduce social tensions but also significantly improve the environmental situation in the region.


Assuntos
Artemisia , Plantas Medicinais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Mentol , Extratos Vegetais/química , Plantas Medicinais/química
7.
Molecules ; 26(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567568

RESUMO

Cold-pressed plant oils are of high interest to consumers due to their unique and interesting flavors. As they are usually only pressed at low temperatures and filtered, without further processing stages (as refining), they preserve their character that originates from the plant the oil was extracted from. Coriander cold pressed oil is gaining popularity as a novel product, obtained from its fruits/seeds; due to the high amount of terpenes, it has very characteristic flavor. A novel, vacuum-assisted sorbent extraction (VASE) method was used to extract terpenes from coriander cold pressed oil. Optimal parameters were determined. The profile of compounds extracted using VASE was compared with that of classic hydrodistillation method. Moreover, 17 monoterpene hydrocarbons and alcohols were identified with ß-linalool as the main compound, followed by α-pinene, γ-terpinene, camphor, sylvestrene, ß-pinene, and o-cymene. Differences were noted between profiles of terpenes after hydrodistillation and VASE extraction. For 8 out of 17 terpenes, VASE was used for their quantitative analysis. Regarding simplicity of the method, small sample requirement (200 mg) and short extraction time (5 min), VASE combined with GC/MS is well suited for characterization of terpenes in such matrix as plant oils.


Assuntos
Manipulação de Alimentos , Óleos Voláteis/química , Óleos de Plantas/química , Terpenos/análise , Terpenos/isolamento & purificação , Vácuo , Terpenos/química , Volatilização
8.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430033

RESUMO

Cold-pressed oils are highly valuable sources of unsaturated fatty acids which are prone to oxidation processes, resulting in the formation of lipid oxidation products, which may deteriorate the sensory quality of the produced oil. The aim of the study was to determine the main volatile compounds which differentiate examined oils and could be used as the markers of lipid oxidation in various oils. In the experiment, cold-pressed oils-brown flaxseed, golden flaxseed, hempseed, milk thistle, black cumin, pumpkin, white poppy seed, blue poppy seed, white sesame, black sesame and argan oils from raw and roasted kernels-were analyzed. To induce oxidative changes, an accelerate storage test was performed, and oils were kept at 60 °C for 0, 2, 4, 7 and 10 days. Volatile compound profiling was performed using SPME-GC-HRToFMS. Additionally, basic measurements such as fatty acid composition, peroxide value, scavenging activity and phenolic compound contents were carried out. Multivariate statistical analyses with volatile compound profiling allow us to differentiate oils in terms of plant variety, oxidation level and seed treatment before pressing. Comparing black cumin cold-pressed oil with other oils, significant differences in volatile compound profiles and scavenging activity were observed. Compounds that may serve as indicators of undergoing oxidation processes in flaxseed, poppy seed, milk thistle and hemp oils were determined.


Assuntos
Antioxidantes/química , Óleos de Plantas/química , Sementes/química , Compostos Orgânicos Voláteis/química
9.
Sensors (Basel) ; 20(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492973

RESUMO

This study presents the applicability of a three-parameters method for digital description of spoiled rapeseed odor based on the use of an electronic nose. The method consists of the use of three parameters to describe the sensor response, i.e., the maximum resistance value, the response time and the cleaning time of the active surface of the sensor. Reference chemical methods, i.e., determination of the ergosterol content and analysis of volatile compounds by gas chromatography-mass spectrometry, were used to monitor qualitative changes occurring in the stored material. A 31-day profile of volatile compounds and changes in the ergosterol content was determined in the study. A total of 18 chemical groups of volatile organic compounds was identified. There was a strong positive correlation between the cleaning time and the percentage content of alcohols and alkenes, as well as ergosterol, as a marker of qualitative changes. The maximum response was another parameter that effectively described the changes occurring in the seeds. This parameter was strongly negatively correlated with esters and amides in the case of six sensors, and with ergosterol, alkenes and to a lesser degree with alcohols in the case of the other two sensors. The study results clearly demonstrated a relationship between the sensor responses and the percentage content of alcohols and alkenes, which provided novel practical information for the oilseed branch.

10.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531938

RESUMO

Soluble sugars such as sucrose, glucose and fructose in plant host cells not only play the role as donors of carbon skeletons, but they may also induce metabolic signals influencing the expression of defense genes. These metabolites function in a complex network with many bioactive molecules, which independently or in dialogue, induce successive defense mechanisms. The aim of this study was to determine the involvement of sucrose and monosaccharides as signaling molecules in the regulation of the levels of phytohormones and hydrogen peroxide participating in the defense responses of Lupinus luteus L. to a hemibiotrophic fungus Fusarium oxysporum Schlecht f. sp. lupini. A positive correlation between the level of sugars and postinfection accumulation of salicylic acid and its glucoside, as well as abscisic acid, was noted. The stimulatory effect of sugars on the production of ethylene was also reported. The protective role of soluble sugars in embryo axes of yellow lupine was seen in the limited development of infection and fusariosis. These results provide evidence for the enhanced generation of signaling molecules both by sugar alone as well as during the crosstalk between sugars and infection caused by F. oxysporum. However, a considerable postinfection increase in the level of these signaling molecules under the influence of sugars was recorded. The duration of the postinfection generation of these molecules in yellow lupine was also variable.


Assuntos
Fusarium/patogenicidade , Lupinus/metabolismo , Lupinus/microbiologia , Doenças das Plantas/etiologia , Açúcares/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigenases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Sementes/metabolismo , Superóxido Dismutase/metabolismo
11.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977439

RESUMO

The glucosinolates which are specialized plant metabolites of Brassica vegetables are prone to hydrolysis catalyzed by an endogenous enzyme myrosinase (thioglycoside hydrolase, thioglucosidase) that exists in Brassica plant tissue causing volatile isothiocyanates release. Currently existing literature data on the inactivation of myrosinase is insufficient in particular for use in the analysis of volatile and odor compounds in vegetables rich in glucosinolates. In this study, the impact of different metal salts in effective inactivation of enzyme activity was investigated by solid-phase microextraction (SPME) and GC/MS system in aqueous samples and kohlrabi matrix. A saturated solution of calcium chloride which is commonly used to stop enzyme activity in plant tissue inactivates the myrosinase-glucosinolate system. However, even without the participation of myrosinase, it changes the reaction pathway towards nitrile formation. The model experiment shows that optimum efficiency in inhibition of the enzyme system shows iron(III) ions, silver ions, and anhydride sodium sulfate resulting in no volatile products derived from glucosinolates. However, in the kohlrabi matrix, the strongest enzyme inhibition effect was observed for silver salt resulting in no volatile products, also both anhydrous Na2SO4 and saturated CaCl2 solution seem to be useful inhibitors in flavor studies.


Assuntos
Glicosídeo Hidrolases/metabolismo , Metais/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sais/química , Sementes/química , Sinapis/química , Ativação Enzimática/efeitos dos fármacos , Volatilização
12.
Molecules ; 25(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936132

RESUMO

The volatiles of cape gooseberry fruit (Physalis peruviana L.) were isolated by solvent-assisted flavor evaporation (SAFE), odor active compounds identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). Quantitation of compounds was performed by headspace-solid phase microextraction (HS-SPME) for all but one. Aroma extract dilution analysis (AEDA) revealed 18 odor active regions, with the highest flavor dilution values (FD = 512) noted for ethyl butanoate and 4-hydroxy-2,5-dimethylfuran-3-one (furaneol). Odor activity values were determined for all 18 compounds and the highest was noted for ethyl butanoate (OAV = 504), followed by linalool, (E)-non-2-enal, (2E,6Z)-nona-2,6-dienal, hexanal, ethyl octanoate, ethyl hexanoate, butane-2,3-dione, and 2-methylpropanal. The main groups of odor active compounds in Physalis peruviana L. were esters and aldehydes. A recombinant experiment confirmed the identification and quantitative results.


Assuntos
Aromatizantes/química , Frutas/química , Odorantes/análise , Physalis/química , Compostos Orgânicos Voláteis/química , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/química , Aldeídos/química , Ésteres/análise , Aromatizantes/isolamento & purificação , Furanos/análise , Furanos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Olfatometria/métodos , Olfato/fisiologia , Microextração em Fase Sólida/métodos , Paladar/fisiologia , Compostos Orgânicos Voláteis/isolamento & purificação
13.
Molecules ; 24(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678255

RESUMO

Brassica vegetables are a significant component of the human diet and their popularity is systematically increasing. The interest in plants from this group is growing because of numerous reports focused on their pro-health properties. However, some consumers are not enthusiastic about these vegetables because of their specific bitter taste and sharp, sulfurous aroma. In this study, the volatile composition of 15 Brassica cultivars (five Brussels sprouts, four kohlrabi, three cauliflower and three broccoli), both raw and cooked, was analyzed by solid phase microextraction and comprehensive two-dimensional gas chromatography with time of flight mass spectrometry (SPME-GC×GC-ToFMS). Differences were found between the analyzed vegetables, as well as different cultivars of the same vegetable. Moreover, the influence of cooking on the composition of volatile compounds was evaluated. All the vegetables were frozen before analyses, which is why the impact of this process on the volatile organic compounds (VOCs) was included. The most abundant groups of compounds were sulfur components (including bioactive isothiocyanates), nitriles, aldehydes and alcohols. Cooking in general caused a decrease in the abundance of main volatiles. However, the amount of bioactive isothiocyanates increased in most cultivars after cooking. The effect of freezing on the volatile fraction was presented based on the Brussels sprout cultivars. Most of the changes were closely related to the activity of the lipoxygenase (LOX) pathway enzymes. These are characterized by a marked reduction in alcohol contents and an increment in aldehyde contents. Moreover, important changes were noted in the concentrations of bioactive components, e.g., isothiocyanates. This research included a large set of samples consisting of many cultivars of each analyzed vegetable, which is why it provides a considerable body of general information concerning volatiles in Brassica vegetables.


Assuntos
Brassica/química , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Culinária , Cromatografia Gasosa-Espectrometria de Massas , Isotiocianatos/análise , Nitrilas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Verduras/química
14.
Crit Rev Food Sci Nutr ; 58(18): 3130-3140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28718657

RESUMO

It is well known that consumption of Brassica vegetables has beneficial effect on human's health. The greatest interest is focused on glucosinolates and their hydrolysis products isothiocyanates, due to their potential as cancer preventing compounds. Brassica vegetables are also rich in flavor compounds belonging to many chemical groups. The main sensory sensation related to these vegetable is their characteristic sharp and bitter taste, and unique aroma. Because of these features this group of vegetables is often rejected by consumers. Interestingly, for some people unpleasant sensations are not perceived, suggesting a potential role of inter-individual variability in bitter taste perception and sensibility. Receptors responsible for bitter sensation with the emphasis on Brassica are reviewed, as well as genetic predisposition for bitterness perception by consumers. Also the role of glucosinolates and isothiocyanates as compounds responsible for bitter taste is discussed based on data from the field of food science and molecular biology. Isothiocyanates are shown in broaded context of flavor compounds also contributing to the aroma of Brassica vegetables.


Assuntos
Brassica/química , Glucosinolatos/análise , Isotiocianatos/análise , Percepção Gustatória/genética , Paladar/fisiologia , Anticarcinógenos , Comportamento do Consumidor , Preferências Alimentares , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Isotiocianatos/metabolismo , Odorantes/análise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Paladar/efeitos dos fármacos , Paladar/genética , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia
15.
J Sep Sci ; 40(2): 532-541, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27862955

RESUMO

An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 µL, 20, 50:50 µL/s, 280°C, 100 µL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 µg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity.


Assuntos
Análise de Alimentos/métodos , Physalis/química , Compostos Orgânicos Voláteis/análise , Limite de Detecção , Temperatura , Compostos Orgânicos Voláteis/isolamento & purificação
16.
Food Chem ; 458: 140207, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943959

RESUMO

False flax (Camelina sativa L.), known as camelina, is an ancient oil plant that has gathered renewed interest. In this study, a comprehensive analysis encompassing nontargeted volatilomics and targeted, quantitative metabolomics performed for cold-pressed oil and press cake and was integrated with sensory analysis of cold-pressed camelina oil and the effect of seed roasting was evaluated. Roasting in general resulted in the formation of 22 new volatile organic compounds (VOCs) in oil, while roasting at 140 and 180 °C resulted in the formation of 12 and 124 unique VOCs, respectively. Roasting notably influenced the profile of primary and secondary metabolites in both oil and press cakes, as well as volatilome and aroma of cold-pressed camelina oil. Many VOCs can be attributed to thermal degradation of primary and secondary metabolites. Roasting intensified the flavour of cold-pressed camelina oil, enhancing the perception of notes formed through the Maillard reaction.

17.
Food Chem ; 439: 138093, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043285

RESUMO

The displacement effect can be an issue for the quantitation of analytes with low affinity towards the extraction phase in solid-phase microextraction (SPME) for food samples that have low level of binding matrix or high level of hydrophobic compounds. In this communication, automated sequential SPME-GC-MS strategy was developed for addressing the displacement issue. The SPME thin film with PDMS coating was firstly used for the extraction of hydrophobic components in the sample which cause displacement and then SPME fiber with DVB/CAR/PDMS coating was applied in the second step for the extraction of the remain compounds. This new strategy was investigated by using 10 key food odorants as target analytes and tested in commercial beer samples. The results suggested that sequential SPME can decrease the displacement effect and improve the extraction efficiency for polar analytes.


Assuntos
Odorantes , Microextração em Fase Sólida , Microextração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas
18.
Nutr Res ; 127: 63-74, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38876040

RESUMO

Betaine supplementation is used by athletes, but its mechanism of action is still not fully understood. We hypothesized that betaine supplementation would increase betaine concentration and alter amino acid profiles in relation to MTHFR genotype and dose in physically active males. The study followed a randomized placebo-controlled cross-over design. Blood samples were collected before and after each supplementation period. Serum was analyzed for amino acid profile, homocysteine, betaine, choline, and trimethylamine N-oxide (TMAO) concentrations. For the washout analysis, only participants starting with betaine were included (n = 20). Statistical analysis revealed no differences in the amino acid profile after betaine supplementation. However, betaine concentration significantly increased after betaine supplementation (from 4.89 ± 1.59 µg/mL to 17.31 ± 9.21 µg/mL, P < .001), with a greater increase observed in MTHFR (C677T, rs180113) T-allele carriers compared to CC (P = .027). Betaine supplementation caused a decrease in homocysteine concentration (from 17.04 ± 4.13 µmol/L to 15.44 ± 3.48 µmol/L, P = .00005) and a non-significant increase in TMAO concentrations (from 0.27 ± 0.20 µg/ml to 0.44 ± 0.70 µg/ml, P = .053), but had no effect on choline concentrations. Serum betaine concentrations were not significantly different after the 21-day washout from the baseline values (baseline: 4.93 ± 1.87 µg/mL and after washout: 4.70 ± 1.70 µg/mL, P = 1.000). In conclusion, betaine supplementation increased betaine and decreased homocysteine concentrations, but did not affect the amino acid profile or choline concentrations in healthy active males. Betaine concentrations may be dependent on MTHFR genotype.

19.
J Agric Food Chem ; 71(5): 2637-2643, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701260

RESUMO

Mass spectrometry based quasi-electronic nose using solid-phase microextraction to introduce volatiles directly to mass spectrometer without chromatographic separation (HS-SPME-MS) was used to discriminate 45 raw spirits produced from C3 (potato, rye, wheat) and C4 (corn, sorghum) plants. The samples were also subjected to isotope ratio mass spectrometry (IRMS), which unequivocally distinguished C3 from C4 samples; however, no clear differentiation was observed for C3 samples. On the contrary, HS-SPME-MS, which uses unresolved volatile compounds "fingerprints" in a form of ions of a given m/z range and various intensities provided excellent sample classification and prediction after OPLS-DA data processing verified also by the artificial neural network (ANN).


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química , Espectrometria de Massas/métodos , Isótopos/análise , Bebidas Alcoólicas/análise , Microextração em Fase Sólida/métodos
20.
Metabolites ; 13(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37887370

RESUMO

The grain of 30 winter wheat cultivars differing in terms of their resistance to FHB (Fusarium head blight) was tested. The cultivars were grown in four variants of field trials established in a split-plot design: control without fungicides, chemical control of FHB with fungicides after Fusarium inoculation, Fusarium head inoculation, and organic cultivation. The profile of volatile compounds in grain samples was determined by mean headspace-solid phase microextraction and analyzed by gas chromatography time-of-flight mass spectroscopy. The identified volatile profile comprised 146 compounds belonging to 14 chemical groups. The lowest abundance of volatile organic compounds (VOCs) was found for the organic cultivation variant. The performed discriminant analysis facilitated the complete separation of grain for individual experimental variants based on the number of VOCs decreasing from 116 through 62, 37 down to 14. The grain from organic farming was characterized by a significantly different VOCs profile than the grain from the other variants of the experiment. The compounds 1-methylcycloheptanol, 2-heptanone, 2(3H)-furanone, and 5-hexyldihydro-2(3H)-furanone showed statistically significant differences between all four experimental variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA