Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 62(2): 194-206, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105115

RESUMO

Here we report the identification and verification of a ß-hydroxybutyrate-derived protein modification, lysine ß-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated ß-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone ß-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of ß-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.


Assuntos
Cetoacidose Diabética/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Histonas/metabolismo , Hidroxibutiratos/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Inanição/metabolismo , Animais , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Cetoacidose Diabética/induzido quimicamente , Cetoacidose Diabética/genética , Modelos Animais de Doenças , Epigênese Genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Células HEK293 , Histonas/genética , Humanos , Lisina , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Inanição/genética , Estreptozocina
2.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34164657

RESUMO

Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important for maintaining the stem cell population, it is speculated that it underlies tumorigenesis. Therefore, this process must be tightly controlled. Here, we show that a translational regulator, me31B, plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.


Assuntos
RNA Helicases DEAD-box , Proteínas de Drosophila , Drosophila , Células Germinativas , Células-Tronco , Animais , Diferenciação Celular , RNA Helicases DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Homeostase , Masculino , Espermatogônias
3.
Trends Genet ; 33(12): 971-978, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947158

RESUMO

Germ cells develop as a cyst of interconnected sibling cells in a broad range of organisms in both sexes. A well-established function of intercellular connectivity is to transport cytoplasmic materials from 'nurse' cells to oocytes, a critical process for developing functional oocytes in ovaries of many species. However, there are situations where connectivity exists without a nursing mechanism, and the biological meaning of such connectivity remains obscure. In this review, we summarize current knowledge on the formation of intercellular connectivity, and discuss its meaning by visiting multiple examples of germ cell connectivity observed in evolutionarily distant species.


Assuntos
Células Germinativas/fisiologia , Animais , Citoplasma/fisiologia , Feminino , Oócitos/fisiologia , Oogênese/fisiologia , Ovário/fisiologia
4.
Nat Commun ; 14(1): 562, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732543

RESUMO

Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.


Assuntos
Caenorhabditis elegans , Triptofano , Animais , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidade , Oxigenases/metabolismo , Carbono , Mamíferos/metabolismo
5.
Evolution ; 70(6): 1322-33, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27139503

RESUMO

A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early-diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze single-gene phylogenies generated with over 900 species sampled from among Bacteria, Archaea, and Eukaryota to identify well-supported interdomain LGTs. We focus on ancient interdomain LGT (i.e., those between prokaryotes and multiple lineages of Metazoa) as systematic errors in single-gene tree reconstruction create uncertainties for interpreting eukaryote-to-eukaryote transfer. The breadth of the sampled Metazoa enables us to estimate the timing of LGTs, and to examine the pattern before versus after the evolution of a sequestered germline. We identified 58 LGTs found only in Metazoa and prokaryotes (i.e., bacteria and/or archaea), and seven genes transferred from prokaryotes into Metazoa plus one other eukaryotic clade. Our analyses indicate that more interdomain transfers occurred before the development of a sequestered germline, consistent with the hypothesis that this feature is an obstacle to LGT.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Células Germinativas , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA