Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(32): e2300950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37066725

RESUMO

Lithium-sulfur batteries (LSBs) are recognized as the prospective candidate in next-generation energy storage devices due to their gratifying theoretical energy density. Nonetheless, they still face the challenges of the practical application including low utilization of sulfur and poor cycling life derived from shuttle effect of lithium polysulfides (LiPSs). Herein, a hollow polyhedron with heterogeneous CoO/Co9 S8 /nitrogen-doped carbon (CoO/Co9 S8 /NC) is obtained through employing zeolitic imidazolate framework as precursor. The heterogeneous CoO/Co9 S8 /NC balances the redox kinetics of Co9 S8 with chemical adsorption of CoO toward LiPSs, effectively inhibiting the shuttle of LiPSs. The mechanisms are verified by both experiment and density functional theory calculation. Meanwhile, the hollow structure acts as a sulfur storage chamber, which mitigates the volumetric expansion of sulfur and maximizes the utilization of sulfur. Benefiting from the above advantages, lithium-sulfur battery with S-CoO/Co9 S8 /NC achieves a high initial discharge capacity (1470 mAh g-1 ) at 0.1 C and long cycle life (ultralow capacity attenuation of 0.033% per cycle after 1000 cycles at 1 C). Even under high sulfur loading of 3.0 mg cm-2 , lithium-sulfur battery still shows the satisfactory electrochemical performance. This work may provide an idea to elevate the electrochemical performance of LSBs by constructing a hollow metal oxide/sulfide/nitrogen-doped carbon heterogeneous structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA