Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837725

RESUMO

Air conditioning using a liquid desiccant (LD) is an energy-efficient air purification and cooling system. However, high energy is required to concentrate or regenerate the LD. This study aimed to investigate the characteristics of membrane fouling in more detail and determine control strategies for LD concentrating using membrane distillation (MD). Two different LDs-lithium chloride (LiCl) and potassium formate (HCOOK)-were used. Because LDs require high concentrations by nature (i.e., 40 wt% for LiCl and 70 wt% for HCOOK), the concentration was started from half of those concentrations. This resulted in a flux decline with severe membrane fouling during the concentration using MD. Different membrane fouling mechanisms were also observed, depending on the LD type. Three different physical membrane fouling control methods, including water flushing (WF), air backwashing (AB), and membrane spacer (SP), were introduced. Results showed that WF was the most effective. Both AB and SP showed a marginal change to no cleaning; however, an initial flux with SP was about 1.5 times higher than no cleaning. Therefore, WF combined with the SP could maintain a high flux and a low fouling propensity in the treatment of a high-concentration solution using MD.

2.
Water Res ; 231: 119649, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702024

RESUMO

Membrane distillation (MD) transfers heat and mass simultaneously through a hydrophobic membrane. Hence, it is sensitive to both concentration and temperature polarisation (CP and TP) effects. In this study, we fabricated feed spacers to improve MD efficiency by alleviating the polarisation effects. First, a 3D printed spacer design was optimised to show superior performance amongst the others tested. Then, to further enhance spacer performance, we incorporated highly thermally stable carbon nanofillers, including carbon nanotubes (CNT) and graphene, in the fabrication of filaments for 3D printing. All the fabricated spacers had a degree of engineered multi-scale roughness, which was relatively high compared to that of the polylactic acid (PLA) spacer (control). The use of nanomaterial-incorporated spacers increased the mean permeate flux significantly compared to the PLA spacer (27.1 L/m2h (LMH)): a 43% and 75% increase when using the 1% graphene-incorporated spacer (38.9 LMH) and 2% CNT incorporated spacer (47.5 LMH), respectively. This could be attributed to the locally enhanced turbulence owing to the multi-scale roughness formed on the spacer, which further increased the vaporisation rate through the membrane. Interestingly, only the CNT-embedded spacer markedly reduced the ion permeation through the membrane, which may be due to the effective reduction of CP. This further decreased with increasing CNT concentration, confirming that the CNT spacer can simultaneously reduce the CP and TP effects in the MD process. Finally, we successfully proved that the multi-scale roughness of the spacer surface induces micromixing near the membrane walls, which can improve the MD performance via computational fluid dynamics.


Assuntos
Grafite , Nanotubos de Carbono , Purificação da Água , Destilação , Membranas Artificiais , Poliésteres , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA