Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202411092, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109443

RESUMO

A lateral expansion of molecular spoked wheels (MSWs) based on an all-phenylene backbone is described. The MSWs contain a central hub, six spokes, and a rim that is formed by a sixfold Yamamoto coupling of the respective non-cyclized dodecabromo precursor yielding MSWs with up to 30 phenylene rings in the perimeter. Attempts to prepare compounds of such size without flexible side groups at the spokes were unsuccessful, most probably due to an aggregation and accompanying oligomerization of the precursors during the cyclization. To overcome these problems, fluorene units are inserted into the spokes. These contain additional alkyl chains and lead to a curvature of the wheels. Quantum chemical calculations on the mechanism of the Yamamoto coupling lead to geometry and strain-related criteria for the successful rim closure to the respective MSW. Subsequently, MSWs are prepared with four and even six phenylene units at each edge of the hexagonal wheels. The resulting MSWs are characterized by spectroscopic methods, and additionally some of them are visualized via scanning tunneling microscopy (STM).

2.
Chemistry ; 29(70): e202302662, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37721199

RESUMO

The modular synthesis of a series of nanoscale phenylene bicyclophanes with an intraannular orthogonal pillar is described. The compounds are obtained by a Suzuki cross-coupling condensation and are characterized by mass spectrometry and NMR spectroscopy as well as in situ scanning tunneling microscopy at the solid/liquid interface of highly ordered pyrolytic graphite. In addition, their structures and conformations are supported by quantum chemical calculations, also after adsorption to the substrate. A set of two alkyl chain substitution patterns as well as a combination of both were investigated with respect to their ability to form extended 2D-crystalline superstructures on graphite. It shows that not the most densely packed surface coverage gives the most stable structure, but the largest number of alkyl chains per molecule determines the structural robustness to alterations at the pillar functionality.

3.
Angew Chem Int Ed Engl ; 56(5): 1234-1238, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28079969

RESUMO

π-Conjugated segments, chromophores, are the electronically active units of polymer materials used in organic electronics. To elucidate the effect of the bending of these linear moieties on elementary electronic properties, such as luminescence color and radiative rate, we introduce a series of molecular polygons. The π-system in these molecules becomes so distorted in bichromophores (digons) that these absorb and emit light of arbitrary polarization: any part of the chain absorbs and emits radiation with equal probability. Bending leads to a cancellation of transition dipole moment (TDM), increasing excited-state lifetime. Simultaneously, fluorescence shifts to the red as radiative transitions require mixing of the excited state with vibrational modes. However, strain can become so large that excited-state localization on shorter units of the chain occurs, compensating TDM cancellation. The underlying correlations between shape and photophysics can only be resolved in single molecules.

4.
Nano Lett ; 15(10): 7133-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26360345

RESUMO

The synthesis, purification, and structure characterization of a seven-ring interlocked DNA catenane is described. The design of the seven-ring catenane allows the dynamic reconfiguration of any of the four rings (R1, R3, R4, and R6) on the catenane scaffold, or the simultaneous switching of any combination of two, three, or all four rings to yield 16 different isomeric states of the catenane. The dynamic reconfiguration across the states is achieved by implementing the strand-displacement process in the presence of appropriate fuel/antifuel strands and is probed by fluorescence spectroscopy. Each of the 16 isomers of the catenane can be transformed into any of the other isomers, thus allowing for 240 dynamic transitions within the system.


Assuntos
Antracenos/química , DNA/química , Nanoestruturas , Isomerismo
5.
Angew Chem Int Ed Engl ; 53(29): 7499-503, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24889855

RESUMO

Interlocked DNA rings (catenanes) are interesting reconfigurable nanostructures. The synthesis of catenanes with more than two rings is, however, hampered, owing to low yields of these systems. We report a new method for the synthesis of catenanes with a controlled number of rings in satisfactory yields. Our approach is exemplified by the synthesis of a five-ring DNA catenane that exists in four different configurations. By the use of nucleic acids as "fuels" and "antifuels", the cyclic reconfiguration of the system across four states is demonstrated. One of the states, olympiadane, corresponds to the symbol of the Olympic Games. The five-ring catenane was implemented as a mechanical scaffold for the reconfiguration of Au NPs. The advantages of DNA catenanes over supramolecular catenanes include the possibility of generating highly populated defined states and the feasibility of tethering nanoobjects to the catenanes, which act as a mechanical scaffold to reconfigure the nanoobjects.


Assuntos
DNA/química , Nanoestruturas , Microscopia de Força Atômica
6.
Phys Chem Chem Phys ; 12(36): 10671-84, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20730151

RESUMO

This perspective focuses on the cage size dependent properties of novel solid fullerene nanofilms grown by soft-landing of mass-selected C(n)(+) (48, 50, 52, 54, 56, 58, 62, 64, 66 and 68) onto room temperature graphite surfaces under ultra-high vacuum conditions. Such non-isolated-pentagon-ring (non-IPR) fullerene materials are not accessible to standard fullerene preparation methods. The component molecular building blocks of non-IPR films were generated by electron impact induced ionization/fragmentation of sublimed IPR-C(70)(D(5h)) (-->C(n) (n = 68, 66, 64, 62)) or IPR-C(60)(I(h)) (-->C(n) (n = 58, 56, 54, 52, 50)). Non-IPR fullerene films on graphite grow via formation of dendritic C(n) aggregates, whereas deposition of IPR fullerenes under analogous conditions (via deposition of unfragmented C(60)(+) and C(70)(+)) leads to compact islands. The latter are governed by weak van der Waals cage-cage interactions. In contrast, the former are stabilized by covalent intercage bonds as mediated by the non-IPR sites (primarily adjacent pentagon pairs, AP). A significant fraction of the deposited non-IPR C(n) cages can be intactly (re)sublimed by heating. The corresponding mean desorption activation energies, E(des), increase from 2.1 eV for C(68) up to 2.6 eV for C(50). The densities of states in the valence band regions (DOS), surface ionization potentials (sIP) and HOMO-LUMO gaps (Delta) of semiconducting non-IPR films were measured and found to vary strongly with cage size. Overall, the n-dependencies of these properties can be interpreted in terms of covalently interconnected oligomeric structures comprising the most stable (neutral) C(n) isomers-as determined from density functional theory (DFT) calculations. Non-IPR fullerene films are the first known examples of elemental cluster materials in which the cluster building blocks are covalently but reversibly interconnected.

7.
J Chem Phys ; 124(14): 144704, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16626228

RESUMO

A tandem time-of-flight mass spectrometer with an intermediate surface was used to quantify electron transfer during glancing incidence scattering of hyperthermal C(60) (+) (E(coll)=250-500 eV, theta(in)=75 degrees ) from (i) self-assembled monolayers of n-alkylthiols on gold (of various chain lengths), (ii) partly fluorinated alkylthiols on gold, as well as (iii) clean gold surfaces. Self-assembled monolayers (SAMs) behave as insulating layers with their thicknesses determining the electron tunneling probability during collision. Correspondingly, a roughly exponential dependence of the neutralization probability on the chain length n was found. A pronounced dependence of the neutral yield on the primary beam kinetic energy indicates that dynamic SAM deformation and associated projectile penetration depth also play a role in determining electron transfer efficiency. Results are consistent with the molecular deformability of SAMs as determined with other experimental methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA