Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1651-1663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942021

RESUMO

1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles, 1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles, 12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g-i+, respectively) have been synthesized and reduced with NaBH4 to 1gH, 1hH, and 1iH, and with Na:Hg to 1g2 and 1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts. E(1+/1•) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducing E(1+/1•) values, as well as cathodic shifts in E(12•+/12) and E(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the 1H species with PC61BM. Because 2-aryl groups stabilize radicals, 1b2 and 1g2 exhibit weaker bonds than 1e2 and 1h2 and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a "cleavage-first" pathway, while 1e2 and 1h2 react only via "electron-transfer-first". 1h2 exhibits the most cathodic E(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers with VII via "electron-transfer-first". Crystal structures show rather long central C-C bonds for 1b2 (1.5899(11) and 1.6194(8) Å) and 1h2 (1.6299(13) Å).

2.
J Am Chem Soc ; 142(43): 18637-18644, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33058663

RESUMO

A more robust mechanistic understanding of imine-linked two-dimensional covalent organic frameworks (2D COFs) is needed to improve their crystalline domain sizes and to control their morphology, both of which are necessary to fully realize their application potential. Here, we present evidence that 2D imine-linked COFs rapidly polymerize as crystalline sheets that subsequently reorganize to form stacked structures. Primarily, this study focuses on the first few minutes of 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde polymerization, which yields an imine-linked 2D COF. In situ X-ray diffraction and thorough characterization of solids obtained using gentler isolation and activation methods than have typically been used in the literature indicate that periodic imine-linked 2D structures form within 60 s, which then form more ordered stacked structures over the course of several hours. This stacking process imparts improved stability toward the isolation process relative to that of the early stage materials, which likely obfuscated previous mechanistic conclusions regarding 2D polymerization that were based on products isolated using harsh activation methods. This revised mechanistic picture has useful implications; the 2D COF layers isolated at very short reaction times are easily exfoliated, as observed in this work using high-resolution transmission electron microscopy and atomic force microscopy. These results suggest improved control of imine-linked 2D COF formation can be obtained through manipulation of the polymerization conditions and interlayer interactions. Qualitatively similar results were obtained for analogous materials obtained from 2,5-di(alkoxy)terephthaldehyde derivatives, except for the COF with the longest alkoxy chains examined (OC12H25), which, although shown by in situ X-ray diffraction to be highly crystalline in the reaction mixture, is much less crystalline when isolated than the other COFs examined, likely due to the more severe steric impact of the dodecyloxy functionality on the stacking process.

3.
J Am Chem Soc ; 142(2): 783-791, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31894972

RESUMO

Here we report that a covalent organic framework (COF), which contains 2,5-di(imine)-substituted 1,4-dihydroxybenzene (diiminol) moieties, undergoes color changes in the presence of solvents or solvent vapor that are rapid, passive, reversible, and easily detectable by the naked eye. A new visible absorption band appears in the presence of polar solvents, especially water, suggesting reversible conversion to another species. This reversibility is attributed to the ability of the diiminol to rapidly tautomerize to an iminol/cis-ketoenamine and its inability to doubly tautomerize to a diketoenamine. Density functional theory (DFT) calculations suggest similar energies for the two tautomers in the presence of water, but the diiminol is much more stable in its absence. Time-dependent DFT calculations confirm that the iminol/cis-ketoenamine absorbs at longer wavelength than the diiminol and indicate that this absorption has significant charge-transfer character. A colorimetric humidity sensing device constructed from an oriented thin film of the COF responded quickly to water vapor and was stable for months. These results suggest that tautomerization-induced electronic structure changes can be exploited in COF platforms to give rapid, reversible sensing in systems that exhibit long-term stability.

4.
Chemistry ; 22(27): 9375-86, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27244223

RESUMO

A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all-in-one materials for multifarious applications in organic light-emitting diodes (OLEDs), that is, as hole-transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127-214 °C), they are superior alternatives to popular N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double-layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2 acac] (btp=2-(2'-benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3 ] (ppy=2-phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.

5.
ACS Omega ; 9(13): 15410-15420, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585116

RESUMO

Safety concerns of traditional liquid electrolytes, especially when paired with lithium (Li) metal anodes, have stimulated research of solid polymer electrolytes (SPEs) to exploit the superior thermal and mechanical properties of polymers. Polyphosphazenes are primarily known for their use as flame retardant materials and have demonstrated high Li-ion conductivity owing to their highly flexible P = N backbone which promotes Li-ion conduction via inter- and intrachain hopping along the polymer backbone. While polyphosphazenes are largely unexplored as SPEs in the literature, a few existing examples showed promising ionic conductivity. By anchoring the anion to the polymer backbone, one may primarily allow the movement of Li ions, alleviating the detrimental effects of polarization that are common in conventional dual-ion conducting SPEs. Anion-anchored SPEs, known as single Li-ion conducting solid polymer electrolytes (SLiC-SPEs), exhibit high Li-ion transference numbers (tLi+), which limits Li dendrite growth, thus further increasing the safety of SPEs. However, previously reported SLiC-SPEs suffer from inadequate ionic conductivity, small electrochemical stability windows (ESWs), and limited cycling stability. Herein, we report three polyphosphazene-based SLiC-SPEs comprising lithiated polyphosphazenes. The SLiC polyphosphazenes were prepared through a facile synthesis route, opening the door for enhanced tunability of polymer properties via facile macromolecular nucleophilic substitution and subsequent lithiation. State-of-the-art characterization techniques, such as differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR) were employed to probe the effect of the polymer structure on Li-ion dynamics and other electrochemical properties. Produced SPEs showed thermal stability up to ∼208 °C with ionic conductivities comparable to that of the best-reported SLiC-SPEs that definitively comprise no solvents or plasticizers. Among the three lithiated polyphosphazenes, the SPE containing dilithium poly[bis(trifluoroethylamino)phosphazene] (pTFAP2Li) exhibited the most promising electrochemical characteristics with tLi+ of 0.76 and compatibility with both Li metal anodes and LiFePO4 (LFP) cathodes; through 40 cycles at 100 °C, the PEO-pTFAP2Li blend showed 81.2% capacity utilization and 86.8% capacity retention. This work constitutes one of the first successful demonstrations of the cycling performance of a true all-solid-state Li-metal battery using SLiC polyphosphazene SPEs.

6.
ACS Appl Mater Interfaces ; 16(43): 58506-58519, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39431613

RESUMO

Solid polymer electrolytes (SPEs) typically consist of salts with mobile anions that could cause instabilities and parasitic side reactions in solid-state lithium (Li) batteries. To address this challenge, single-Li-ion conducting (SLIC) SPEs, where anions of Li salts are covalently attached to the polymer backbone, have been utilized to reduce the number of mobile anions. This approach improves the cationic transference number but is accompanied by a loss of ionic conductivity. In this work, we investigate a synergetic approach of using both a polymerizable SLIC salt and a conventional Li salt in a polymer matrix by in situ polymerization of the poly(propylene glycol) acrylate (PPGA) monomer. The synthesized hybrid SPEs show a high ionic conductivity of up to ∼2 × 10-4 S cm-1 and a relatively high Li-ion transference number of ∼0.4. With a significantly reduced fraction of mobile anions in the combined salt SPE, in situ polymerized SPE cells with a LiFePO4 (LFP) cathode achieve a stable performance for over 100 cycles at temperatures as high as 100 °C, which is unattainable with conventional Li salts or electrolytes. Furthermore, solid-state nuclear magnetic resonance spectra provide additional insights into differences in Li nucleus environments and emphasize a reduction in activation energy for hybrid SPEs due to their more open structure. This study opens the path for the fabrication of high-performance solid polymer Li batteries capable of operating at high temperatures using commercial battery fabrication equipment, as in situ polymerized acrylate-based polymers provide drop-in compatibility with conventional battery production, ease of acrylate polymerization, and inexpensive, facile SPE chemistry. We expect that further tuning of the acrylate-based SPE composition may allow further increases in its conductivity without sacrificing its electrochemical stability or mechanical properties.

7.
ACS Energy Lett ; 9(10): 5056-5063, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39416678

RESUMO

Improvements in both the power and energy density of lithium-ion batteries (LIBs) will enable longer driving distances and shorter charging times for electric vehicles (EVs). The use of thicker and denser electrodes reduces LIB manufacturing costs and increases energy density characteristics at the expense of much slower Li-ion diffusion, higher ionic resistance, reduced charging rate, and lower stability. Contrary to common intuition, we unexpectedly discovered that removing a tiny amount of material (<0.4 vol %) from the commercial electrodes in the form of sparsely patterned conical pores greatly improves LIB rate performance. Our research revealed that upon commercial production of high areal capacity electrodes, a very dense layer forms on the electrode surface, which serves as a bottleneck for Li-ion transport. The formation of sparse conical pore channels overcomes such a limitation, and the facilitated ion transport delivers much higher power without reduction in the practically attainable energy. Diffusion and finite element method-based simulations provide deep insights into the fundamentals of ion transport in such electrode designs and corroborate the experimental findings. The reported insights provide a major thrust to redesigning automotive LIB electrodes to produce cheaper, longer driving range EVs that retain fast charging capability.

8.
ACS Appl Mater Interfaces ; 15(27): 32678-32686, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364171

RESUMO

Current lithium-ion battery separators made from polyolefins such as polypropylene and polyethylene generally suffer from low porosity, low wettability, and slow ionic conductivity and tend to perform poorly against heat-triggering reactions that may cause potentially catastrophic issues, such as fire. To overcome these limitations, here we report that a porous composite membrane consisting of poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers functionalized with nanodiamonds (NDs) can realize a thermally resistant, mechanically robust, and ionically conductive separator. We critically reveal the role of NDs in the polymer matrix of the membrane to improve the thermal, mechanical, crystalline, and electrochemical properties of the composites. Taking advantages of these characteristics, the ND-functionalized nanofiber separator enables high-capacity and stable cycling of lithium cells with LiNi0.8Mn0.1Co0.1O2 (NMC811) as the cathode, much superior to those using conventional polyolefin separators in otherwise identical cells.

9.
ACS Appl Mater Interfaces ; 14(49): 54725-54735, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472363

RESUMO

Hierarchically porous TiO2-x/C nanofibers (NFs) with axially aligned cylindrical tunnel pore channels were synthesized as a sulfur (S) host for lithium-sulfur batteries (LSBs) by a microemulsion electrospinning method. We explored a synergistic chemical trapping reinforced by coordinatively unsaturated Ti3+ nuclei with oxygen deficiency (or more broadly via polar O-Ti-O units) in combination with physical trapping in both narrow pores (<5 nm) and larger ordered pore tunnels (20-100 nm) separated by thin walls to allow for a large volume of active material and rapid diffusion within the channels while effectively blocking out the diffusion of soluble lithium polysulfides. Due to this unique architecture and enhanced conductivity, the prepared materials enabled a high S loading (∼72 wt %) and significantly reduced the shuttle effect. Hence, the composite TiO2-x/C@S cathodes exhibited a high utilization of active materials, excellent rate performance, and promising cycling stability (retention of up to ∼1010 mAh g-1 after 150 cycles for the aerial capacity of 1.5 mAh cm-2, with very stable performance even for the high S loading of 2.5 mg cm-2). By designing control nanomaterials that lack either the pore tunnels or the desired chemical compositions, we elucidated the importance of the synergistic effect of both factors. This work demonstrates a successful exploration of oxide NFs with tunnel pores via a simple single-needle microemulsion electrospinning method, which should pave the way for similar nanomaterials engineering with other chemistries for improved LSB performance.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35834402

RESUMO

Iron trifluoride (FeF3), a conversion-type cathode for sodium-ion batteries (SIBs), is based on cheap and abundant Fe and provides high theoretical capacity. However, the applications of FeF3-based SIBs have been hindered by their low-capacity utilization and poor cycling stability. Herein, we report greatly enhanced performance of FeF3 in multiple types of ionic liquid (IL) electrolytes at both room temperature (RT) and elevated temperatures. The Pyr1,4FSI electrolyte demonstrated the best cycling stability with an unprecedented decay rate of only ∼0.023% per cycle after the initial stabilization and an average coulombic efficiency of ∼99.5% for over 1000 cycles at RT. The Pyr1,3FSI electrolyte demonstrated the best cycling stability with a capacity decay rate of only ∼0.25% per cycle at 60 °C. Cells using Pyr1,3FSI and EMIMFSI electrolytes also showed promising cycling stability with capacity decay rates of ∼0.039% and ∼0.030% per cycle over 1000 cycles, respectively. A protective and ionically conductive cathode electrolyte interphase (CEI) layer is formed during cycling in ILs, diminishing side reactions that commonly lead to gassing and excessive CEI growth in organic electrolytes, especially at elevated temperatures. Furthermore, the increased ionic conductivity and decreased viscosity of ILs at elevated temperatures help attain higher accessible capacity. The application of ILs sheds light on designing a protective CEI for its use in stable SIBs.

11.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34850459

RESUMO

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

12.
J Org Chem ; 76(23): 9593-601, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22039832

RESUMO

The methyl groups in TetMe-IBX lower the activation energy corresponding to the rate-determining hypervalent twisting (theoretical calculations), and the steric relay between successive methyl groups twists the structure, which manifests in significant solubility in common organic solvents. Consequently, oxidations of alcohols and sulfides occur at room temperature in common organic solvents. In situ generation of the reactive TetMe-IBX from its precursor iodo-acid, i.e., 3,4,5,6-tetramethyl-2-iodobenzoic acid, in the presence of oxone as a co-oxidant facilitates the oxidation of diverse alcohols at room temperature.

13.
Mater Horiz ; 8(3): 700-727, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821313

RESUMO

Porous crystalline frameworks including zeolites, metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs) have attracted great research interest in recent years. In addition to their assembly in the solid-state being fundamentally interesting and aesthetically pleasing, their potential applications have now pervaded in different areas of chemistry, biology and materials science. When framework materials are endowed with 'flexibility', they exhibit some properties (e.g., stimuli-induced pore breathing and reversible phase transformations) that are distinct from their rigid counterparts. Benefiting from flexibility and porosity, these framework materials have shown promise in applications that include separation of toxic chemicals, isotopes and hydrocarbons, sensing, and targeted delivery of chemicals. While flexibility in MOFs has been widely appreciated, recent developments of COFs and HOFs have established that flexibility is not just limited to MOFs. In fact, zeolites-that are considered rigid when compared with MOFs-are also known to exhibit dynamic modes. Despite flexibility may be conceived as being detrimental to the formation and stability of periodic structures, the landscape of flexible framework structures continues to expand with discovery of new materials with promising applications. In this review, we make an account of different flexible framework materials based on their framework types with a more focus on recent examples and delve into the origin of flexibility in each case. This systematic analysis of different flexibility types based on their origins enables understanding of structure-property relationships, which should help guide future development of flexible framework materials based on appropriate monomer design and tailoring their properties by bottom-up approach. In essence, this review provides a summary of different flexibility types extant to framework materials and critical analysis of importance of flexibility in emerging applications.


Assuntos
Estruturas Metalorgânicas , Hidrogênio , Porosidade
14.
Adv Mater ; 32(2): e1905776, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31763734

RESUMO

Imine-linked 2D covalent organic frameworks (COFs) form more rapidly than previously reported under Brønsted acid-catalyzed conditions, showing signs of crystallinity within a few minutes, and maximum crystallinity within hours. These observations contrast with the multiday reaction times typically employed under these conditions. In addition, vacuum activation, which is often used to isolate COF materials significantly erodes the crystallinity and surface area of the several isolated materials, as measured by N2 sorption and X-ray diffraction. This loss of material quality during isolation for many networks has historically obscured otherwise effective polymerization conditions. The influence of the activation procedure is characterized in detail for three COFs, with the commonly used 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde network (TAPB-PDA COF), the most prone to pore collapse. When the networks are activated carefully, rapid COF formation is general for all five of the imine-linked 2D COFs studied, with all exhibiting excellent crystallinity and surface areas, including the highest surface areas reported to date for three materials. Furthermore, to simplify the workup of COF materials, a simple nitrogen flow method provides high-quality materials without the need for specialized equipment. These insights have important implications for studying and understanding how 2D COFs form.

15.
Adv Mater ; 32(25): e2000752, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406172

RESUMO

The performance of lead-halide perovskite light-emitting diodes (LEDs) has increased rapidly in recent years. However, most reports feature devices operated at relatively small current densities (<500 mA cm-2 ) with moderate radiance (<400 W sr-1 m-2 ). Here, Joule heating and inefficient thermal dissipation are shown to be major obstacles toward high radiance and long lifetime. Several thermal management strategies are proposed in this work, such as doping charge-transport layers, optimizing device geometry, and attaching heat spreaders and sinks. Combining these strategies, high-performance perovskite LEDs are demonstrated with maximum radiance of 2555 W sr-1 m-2 , peak external quantum efficiency (EQE) of 17%, considerably reduced EQE roll-off (EQE > 10% to current densities as high as 2000 mA cm-2 ), and tenfold increase in operational lifetime (when driven at 100 mA cm-2 ). Furthermore, with proper thermal management, a maximum current density of 2.5 kA cm-2 and an EQE of ≈1% at 1 kA cm-2 are shown using electrical pulses, which represents an important milestone toward electrically driven perovskite lasers.

16.
ACS Omega ; 3(2): 1416-1424, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458471

RESUMO

White organic light-emitting diodes (WOLEDs) are at the center stage of OLED research today because of their advantages in replacing the high energy-consuming lighting technologies in vogue for a long time. New materials that emit white light in simple devices are much sought after. We have developed two novel electroluminescent materials, referred to as BABZF and BATOMe, based on a twisted bianthryl core, which are brilliantly fluorescent, thermally highly stable with high T d and T g, and exhibit reversible redox property. Although inherently blue emissive, BABZF leads to white-light emission (CIE ≈ 0.28, 0.33) with a moderate power efficiency of 2.24 lm/W and a very high luminance of 15 600 cd/m2 in the fabricated multilayer nondoped OLED device. This device exhibited excellent color stability over a range of applied potential. Remarkably, similar white-light emission was captured even from a double-layer device, attesting to the innate hole-transporting ability of BABZF despite it being non-nitrogenous, that is, lacking any traditional hole-transporting di-/triarylamino group(s). Similar studies with BATOMe led to inferior device performance results, thereby underscoring the importance of dibenzofuryl groups in BABZF. Experimental as well as theoretical studies suggest the possibility of emission from multiple species involving BABZF and its exciplex and electroplex in the devices. The serendipitously observed white-light emission from a double-layer device fabricated with an unconventional hole-transporting material (HTM) opens up new avenues to create new non-nitrogenous HTMs that may lead to more efficient white-light emission in simple double-layer devices.

17.
ACS Appl Mater Interfaces ; 8(2): 1527-35, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26690799

RESUMO

Despite the fact that benzophenone has traditionally served as a prototype molecular system for establishing triplet state chemistry, materials based on molecular systems containing the benzophenone moiety as an integral part have not been exploited as generic host materials in phosphorescent organic light-emitting diodes (PhOLEDs). We have designed and synthesized three novel host materials, i.e., BP2-BP4, which contain benzophenone as the active triplet sensitizing molecular component. It is shown that their high band gap (3.91-3.93 eV) as well as triplet energies (2.95-2.97 eV) permit their applicability as universal host materials for blue, green, yellow, and red phosphors. While they serve reasonably well for all types of dopants, excellent performance characteristics observed for yellow and green devices are indeed the hallmark of benzophenone-based host materials. For example, maximum external quantum efficiencies of the order of 19.2% and 17.0% were obtained from the devices fabricated with yellow and green phosphors using BP2 as the host material. White light emission, albeit with rather poor efficiencies, has been demonstrated as a proof-of-concept by fabrication of co-doped and stacked devices with blue and yellow phosphors using BP2 as the host material.

18.
ChemSusChem ; 9(3): 274-9, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26773842

RESUMO

A new class of hole-transport materials (HTMs) based on the bimesitylene core designed for mesoporous perovskite solar cells is introduced. Devices fabricated using two of these derivatives yield higher open-circuit voltage values than the commonly used spiro-OMeTAD. Power conversion efficiency (PCE) values of up to 12.11% are obtained in perovskite-based devices using these new HTMs. The stability of the device made using the highest performing HTM (P1) is improved compared with spiro-OMeTAD as evidenced through long-term stability tests over 1000 h.


Assuntos
Derivados de Benzeno/química , Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química , Eletroquímica , Transporte de Elétrons
19.
ACS Appl Mater Interfaces ; 7(5): 3298-305, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25585169

RESUMO

Tröger's bases (TBs) functionalized with carbazoles (TB-Czs) and phosphine oxides (TB-POs) were designed and synthesized as host materials for application in phosphorescent organic light-emitting diodes. The TB scaffold is shown to impart thermal stability with high Tg values (171-211 °C) as well as high triplet energies in the range of 2.9-3.0 eV. With a limited experimentation of the devices, it is shown that the TBs doped with a green phosphor, namely, Ir(ppy)3, permit impressive external efficiencies on the order of ca. 16% with a high brightness of ca. 3000-4000 cd/m2. Better device performance results are demonstrated by a small structural manipulation of the TB scaffold involving substitution of methyl groups in the core scaffold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA