Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Struct Biol ; : 108110, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009246

RESUMO

Atrial fibrillation (AF) is the most common clinical arrhythmia, however there is limited understanding of its pathophysiology including the cellular and ultrastructural changes rendered by the irregular rhythm, which limits pharmacological therapy development. Prior work has demonstrated the importance of reactive oxygen species (ROS) and mitochondrial dysfunction in the development of AF. Mitochondrial structure, interactions with other organelles such as sarcoplasmic reticulum (SR) and T-tubules (TT), and degradation of dysfunctional mitochondria via mitophagy are important processes to understand ultrastructural changes due to AF. However, most analysis of mitochondrial structure and interactome in AF has been limited to two-dimensional (2D) modalities such as transmission electron microscopy (EM), which does not fully visualize the morphological evolution of the mitochondria during mitophagy. Herein, we utilize focused ion beam-scanning electron microscopy (FIB-SEM) and perform reconstruction of three-dimensional (3D) EM from murine left atrial samples and measure the interactions of mitochondria with SR and TT. We developed a novel 3D quantitative analysis of FIB-SEM in a murine model of AF to quantify mitophagy stage, mitophagosome size in cardiomyocytes, and mitochondrial structural remodeling when compared with control mice. We show that in our murine model of spontaneous and continuous AF due to persistent late sodium current, left atrial cardiomyocytes have heterogenous mitochondria, with a significant number which are enlarged with increased elongation and structural complexity. Mitophagosomes in AF cardiomyocytes are located at Z-lines where they neighbor large, elongated mitochondria. Mitochondria in AF cardiomyocytes show increased organelle interaction, with 5X greater contact area with SR and are 4X as likely to interact with TT when compared to control. We show that mitophagy in AF cardiomyocytes involves 2.5X larger mitophagosomes that carry increased organelle contents. In conclusion, when oxidative stress overcomes compensatory mechanisms, mitophagy in AF faces a challenge of degrading bulky complex mitochondria, which may result in increased SR and TT contacts, perhaps allowing for mitochondrial Ca2+ maintenance and antioxidant production.

2.
J Card Fail ; 27(6): 696-699, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639317

RESUMO

BACKGROUND: In the general population, increased aortic stiffness is associated with an increased risk of cardiovascular events. Previous studies have demonstrated an increase in aortic stiffness in patients with a continuous flow left ventricular assist device (CF-LVAD). However, the association between aortic stiffness and common adverse events is unknown. METHODS AND RESULTS: Forty patients with a HeartMate II (HMII) (51 $ 11 years; 20% female; 25% ischemic) implanted between January 2011 and September 2017 were included. Two-dimensional transthoracic echocardiograms of the ascending aorta, obtained before HMII placement and early after heart transplant, were analyzed to calculate the aortic stiffness index (AO-SI). The study cohort was divided into patients who had an increased vs decreased AO-SI after LVAD support. A composite outcome of gastrointestinal bleeding, stroke, and pump thrombosis was defined as the primary end point and compared between the groups. While median AO-SI increased significantly after HMII support (AO-SI 4.4-6.5, P = .012), 16 patients had a lower AO-SI. Patients with increased (n = 24) AO-SI had a significantly higher rate of the composite end point (58% vs 12%, odds ratio 9.8, P < .01). Similarly, those with increased AO-SI tended to be on LVAD support for a longer duration, had higher LVAD speed and reduced use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. CONCLUSIONS: Increased aortic stiffness in patients with a HMII is associated with a significantly higher rates of adverse events. Further studies are warranted to determine the causality between aortic stiffness and adverse events, as well as the effect of neurohormonal modulation on the conduit vasculature in patients with a CF-LVAD.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Acidente Vascular Cerebral , Trombose , Rigidez Vascular , Feminino , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/epidemiologia , Hemorragia Gastrointestinal/etiologia , Insuficiência Cardíaca/epidemiologia , Coração Auxiliar/efeitos adversos , Humanos , Masculino , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Trombose/diagnóstico por imagem , Trombose/epidemiologia , Trombose/etiologia
3.
Circulation ; 139(24): 2765-2777, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30909726

RESUMO

BACKGROUND: Metabolic remodeling in heart failure contributes to dysfunctional lipid trafficking and lipotoxicity. Acyl coenzyme A synthetase-1 (ACSL1) facilitates long-chain fatty acid (LCFA) uptake and activation with coenzyme A (CoA), mediating the fate of LCFA. The authors tested whether cardiac ACSL1 overexpression aids LCFA oxidation and reduces lipotoxicity under pathological stress of transverse aortic constriction (TAC). METHODS: Mice with cardiac restricted ACSL1 overexpression (MHC-ACSL1) underwent TAC or sham surgery followed by serial in vivo echocardiography for 14 weeks. At the decompensated stage of hypertrophy, isolated hearts were perfused with 13C LCFA during dynamic-mode 13C nuclear magnetic resonance followed by in vitro nuclear magnetic resonance and mass spectrometry analysis to assess intramyocardial lipid trafficking. In parallel, acyl CoA was measured in tissue obtained from heart failure patients pre- and postleft ventricular device implantation plus matched controls. RESULTS: TAC-induced cardiac hypertrophy and dysfunction was mitigated in MHC-ACSL1 hearts compared with nontransgenic hearts. At 14 weeks, TAC increased heart weight to tibia length by 46% in nontransgenic mice, but only 26% in MHC-ACSL1 mice, whereas ACSL1 mice retained greater ejection fraction (ACSL1 TAC: 65.8±7.5%; nontransgenic TAC: 45.9±7.3) and improvement in diastolic E/E'. Functional improvements were mediated by ACSL1 changes to cardiac LCFA trafficking. ACSL1 accelerated LCFA uptake, preventing C16 acyl CoA loss post-TAC. Long-chain acyl CoA was similarly reduced in human failing myocardium and restored to control levels by mechanical unloading. ACSL1 trafficked LCFA into ceramides without normalizing the reduced triglyceride storage in TAC. ACSL1 prevented de novo synthesis of cardiotoxic C16- and C24-, and C24:1 ceramides and increased potentially cardioprotective C20- and C22-ceramides post-TAC. ACLS1 overexpression activated AMP activated protein kinase at baseline, but during TAC, prevented the reduced LCFA oxidation in hypertrophic hearts and normalized energy state (phosphocreatine:ATP) and consequently, AMP activated protein kinase activation. CONCLUSIONS: This is the first demonstration of reduced acyl CoA in failing hearts of humans and mice, and suggests possible mechanisms for maintaining mitochondrial oxidative energy metabolism by restoring long-chain acyl CoA through ASCL1 activation and mechanical unloading. By mitigating cardiac lipotoxicity, via redirected LCFA trafficking to ceramides, and restoring acyl CoA, ACSL1 delayed progressive cardiac remodeling and failure.


Assuntos
Acil Coenzima A/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Quinases Ativadas por AMP/metabolismo , Idoso , Animais , Transporte Biológico , Ceramidas/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Miocárdio/patologia , Oxirredução , Triglicerídeos/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
4.
Am J Physiol Heart Circ Physiol ; 318(2): H378-H390, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31886717

RESUMO

Myostatin (MSTN) is a transforming growth factor (TGF)-ß superfamily member that acts as a negative regulator of muscle growth and may play a role in cardiac remodeling. We hypothesized that inhibition of activin type II receptors (ACTRII) to reduce MSTN signaling would reduce pathological cardiac remodeling in experimental heart failure (HF). C57BL/6J mice underwent left anterior descending coronary artery ligation under anesthesia to induce myocardial infarction (MI) or no ligation (sham). MI and sham animals were each randomly divided into groups (n ≥ 10 mice/group) receiving an ACTRII or ACTRII/TGFß receptor-signaling inhibiting strategy: 1) myo-Fc group (weekly 10 mg/kg Myo-Fc) or 2) Fol + TGFi group (daily 12 µg/kg follistatin plus 2 mg/kg TGFß receptor inhibitor), versus controls. ACTRII/TGFBR signaling inhibition preserved cardiac function by echocardiography and prevented an increase in brain natriuretic peptide (BNP). ACTRII/TGFBR inhibition resulted in increased phosphorylation (P) of Akt and decreased P-p38 mitogen-activated protein kinase (MAPK) in MI mice. In vitro, Akt contributed to P-SMAD2,3, P-p38, and BNP regulation in cardiomyocytes. ACTRII/TGFBR inhibition increased sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) levels and decreased unfolded protein response (UPR) markers in MI mice. ACTRII/TGFBR inhibition was associated with a decrease in cardiac fibrosis and fibrosis markers, connective tissue growth factor (CTGF), type I collagen, fibronectin, α-smooth muscle actin, and matrix metalloproteinase (MMP)-12 in MI mice. MSTN exerted a direct regulation on the UPR marker eukaryotic translation initiation factor-2α (eIf2α) in cardiomyocytes. Our study suggests that ACTRII ligand inhibition has beneficial effects on cardiac signaling and fibrosis after ischemic HF.NEW & NOTEWORTHY Activin type II receptor ligand inhibition resulted in preserved cardiac function, a decrease in cardiac fibrosis, improved SERCA2a levels, and a prevention of the unfolded protein response in mice with myocardial infarction.


Assuntos
Receptores de Activinas Tipo II/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Ecocardiografia , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miostatina/antagonistas & inibidores , Miostatina/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Fosforilação , Resistência Física , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Circulation ; 137(19): 2052-2067, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29330215

RESUMO

BACKGROUND: Heart failure leads to mitochondrial dysfunction and metabolic abnormalities of the failing myocardium coupled with an energy-depleted state and cardiac remodeling. The mitochondrial deacetylase sirtuin 3 (SIRT3) plays a pivotal role in the maintenance of mitochondrial function through regulating the mitochondrial acetylome. It is interesting to note that unique cardiac and systemic microRNAs have been shown to play an important role in cardiac remodeling by modulating key signaling elements in the myocardium. METHODS: Cellular signaling was analyzed in human cardiomyocyte-like AC16 cells, and acetylation levels in rodent models of SIRT3-/-and transgenic microRNA-195 (miR-195) overexpression were compared with wild type. Luciferase assays, Western blotting, immunoprecipitation assays, and echocardiographic analysis were performed. Enzymatic activities of pyruvate dehydrogenase (PDH) and ATP synthase were measured. RESULTS: In failing human myocardium, we observed induction of miR-195 along with decreased expression of the mitochondrial deacetylase SIRT3 that was associated with increased global protein acetylation. We further investigated the role of miR-195 in SIRT3-mediated metabolic processes and its impact on regulating enzymes involved in deacetylation. Proteomic analysis of the total acetylome showed increased overall acetylation, and specific lysine acetylation of 2 central mitochondrial metabolic enzymes, PDH and ATP synthase, as well. miR-195 downregulates SIRT3 expression through direct 3'-untranslated region targeting. Treatments with either sirtuin inhibitor nicotinamide, small interfering RNA-mediated SIRT3 knockdown or miR-195 overexpression enhanced acetylation of PDH complex and ATP synthase. This effect diminished PDH and ATP synthase activity and impaired mitochondrial respiration.SIRT3-/- and miR-195 transgenic mice consistently showed enhanced global protein acetylation, including PDH complex and ATP synthase, associated with decreased enzymatic activity. CONCLUSIONS: Altogether, these data suggest that increased levels of miR-195 in failing myocardium regulate a novel pathway that involves direct SIRT3 suppression and enzymatic inhibition via increased acetylation of PDH and ATP synthase that are essential for cardiac energy metabolism.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/enzimologia , MicroRNAs/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Processamento de Proteína Pós-Traducional , Sirtuína 3/metabolismo , Acetilação , Animais , Linhagem Celular , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Mitocôndrias Cardíacas/patologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Miócitos Cardíacos/patologia , Complexo Piruvato Desidrogenase/metabolismo , Transdução de Sinais , Sirtuína 3/deficiência , Sirtuína 3/genética
6.
FASEB J ; 32(3): 1403-1416, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127192

RESUMO

Accumulating data support a role for bioactive lipids as mediators of lipotixicity in cardiomyocytes. One class of these, the ceramides, constitutes a family of molecules that differ in structure and are synthesized by distinct enzymes, ceramide synthase (CerS)1-CerS6. Data support that specific ceramides and the enzymes that catalyze their formation play distinct roles in cell function. In a mouse model of diabetic cardiomyopathy, sphingolipid profiling revealed increases in not only the CerS5-derived ceramides but also in very long chain (VLC) ceramides derived from CerS2. Overexpression of CerS2 elevated VLC ceramides caused insulin resistance, oxidative stress, mitochondrial dysfunction, and mitophagy. Palmitate induced CerS2 and oxidative stress, mitophagy, and apoptosis, which were prevented by depletion of CerS2. Neither overexpression nor knockdown of CerS5 had any function in these processes, suggesting a chain-length dependent impact of ceramides on mitochondrial function. This concept was also supported by the observation that synthetic mitochondria-targeted ceramides led to mitophagy in a manner proportional to N-acyl chain length. Finally, blocking mitophagy exacerbated cell death. Taken together, our results support a model by which CerS2 and VLC ceramides have a distinct role in lipotoxicity, leading to mitochondrial damage, which results in subsequent adaptive mitophagy. Our data reveal a novel lipotoxic pathway through CerS2.-Law, B. A., Liao, X., Moore, K. S., Southard, A., Roddy, P., Ji, R., Szulc, Z., Bielawska, A., Schulze, P. C., Cowart, L. A. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes.


Assuntos
Ceramidas/toxicidade , Mitocôndrias Cardíacas/metabolismo , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia
7.
Proc Natl Acad Sci U S A ; 111(30): 11151-6, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25012294

RESUMO

Heart failure (HF) is associated with high morbidity and mortality and its incidence is increasing worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage HF before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small RNA sequencing. miRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA-target-mRNA interactions, target mRNA levels were negatively correlated with changes in abundance for highly expressed miRNAs in HF and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced HF, which coincided with a similar increase in cardiac troponin I (cTnI) protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 mo following initiation of LVAD support. In stable HF, circulating miRNAs showed less than fivefold differences compared with normal, and myomir and cTnI levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers.


Assuntos
Insuficiência Cardíaca/sangue , MicroRNAs/sangue , Miocárdio/metabolismo , RNA de Transferência/sangue , Biomarcadores/sangue , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Masculino , Miocárdio/patologia , Troponina I/sangue
8.
BMC Cardiovasc Disord ; 16: 138, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301475

RESUMO

BACKGROUND: Galectin-3 is a marker of myocardial inflammation and fibrosis shown to correlate with morbidity and mortality in heart failure (HF). We examined the utility of galectin-3 as a marker of the severity of HF, the response of galectin-3 levels to ventricular assist device (LVAD) implantation or heart transplantation (HTx), and its use as a prognostic indicator. METHODS: Plasma galectin-3 was measured using a commercially available ELISA assay in patients with stable HF (n = 55), severe HF (n = 63), at 3 (n = 17) and 6 (n = 14) months post-LVAD and at LVAD explantation (n = 23), patients following HTx (n = 85) and healthy controls (n = 30). RESULTS: Galectin-3 levels increase with the severity of HF (severe HF: 28.2 ± 14, stable HF: 19.7 ± 13, p = 0.001; controls: 13.2 ± 9 ng/ml, p = 0.02 versus stable HF). Following LVAD implantation, galectin-3 levels are initially lower (3 months: 23.7 ± 9, 6 months: 21.7 ± 9 versus 29.2 ± 14 ng/ml implantation; p = NS) but are higher at explantation (40.4 ± 19 ng/ml; p = 0.005 versus pre-LVAD). Galectin-3 levels >30 ng/ml are associated with lower survival post-LVAD placement (76.5 % versus 95.0 % at 2 years, p = 0.009). After HTx, galectin-3 levels are lower (17.8 ± 7.1 ng/ml post-HTx versus 28.2 ± 14 pre-HTx; p < 0.0001). Patients with coronary allograft vasculopathy (CAV) post-HTx showed higher galectin-3 levels (20.5 ± 8.8 ng/ml versus 16.8 ± 6.3, p = 0.1) and the degree of CAV correlated with levels of galectin-3 (r (2) = 0.17, p < 0.0001). CONCLUSIONS: Galectin-3 is associated with the severity of HF, exhibits dynamic changes during mechanical unloading and predicts survival post-LVAD. Further, galectin-3 is associated with the development on CAV post-HTx. Galectin-3 might serve as a novel biomarker in patients with HF, during LVAD support and following HTx.


Assuntos
Galectina 3/sangue , Insuficiência Cardíaca/terapia , Transplante de Coração , Coração Auxiliar , Contração Miocárdica , Função Ventricular Esquerda , Adulto , Idoso , Área Sob a Curva , Biomarcadores/sangue , Fenômenos Biomecânicos , Proteínas Sanguíneas , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/etiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Galectinas , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Transplante de Coração/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Desenho de Prótese , Curva ROC , Estudos Retrospectivos , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
9.
Am J Physiol Heart Circ Physiol ; 308(9): H1078-85, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25713305

RESUMO

Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Infarto do Miocárdio/complicações , PPAR gama/agonistas , Resistência Física/efeitos dos fármacos , Tiazóis/farmacologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Tolerância ao Exercício/efeitos dos fármacos , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Oxirredução , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
10.
Biochem Biophys Res Commun ; 457(1): 106-11, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25528587

RESUMO

UNLABELLED: Myostatin (MSTN), a negative regulator of muscle growth and size, is increased after acute myocardial infarction (AMI) but timing of upregulation after injury is not known. In this study, we investigated the timing of the MSTN/AKT/p38 pathway activation in heart and skeletal muscle after AMI, as well as the potential effect of cardiac injury-related MSTN endocrine signaling on skeletal muscle and other circulating growth factors. METHODS: Coronary artery ligation was performed in C57BL/6 mice at age 8 weeks to induce AMI. Mice were sacrificed at different time points (10 m, 1 h, 2 h, 6 h, 12 h, 24 h, 1 week, 2 weeks, 1 months and 2 months) after surgery (n=3 per time point, n=18 total). RESULTS: Cardiac and circulating MSTN upregulation occurred as early as 10 min after AMI. Two months after AMI, increased cardiac MSTN/SMAD2,3 and p38 together with decreased IGF-1/AKT signaling suggest an anti-hypertrophic profile. In skeletal muscle, an absence of local MSTN increase was accompanied by increased MSTN-dependent SMAD2,3 signaling, suggestive of paracrine effects due to cardiac-derived MSTN. Protein degradation by the ubiquitin-proteasome system in the skeletal muscle was also evident. Serum from 24h post-MI mice effectively induced a MSTN-dependent increase in atrogin1 and MuRF1. CONCLUSION: Our study shows that cardiac MTSN activation occurs rapidly after cardiac ischemia and may be involved in peripheral protein degradation in the skeletal muscle by activating atrogin1 and MuRF1.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miostatina/metabolismo , Regulação para Cima , Animais , Biomarcadores/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Isquemia Miocárdica/sangue , Miocárdio/patologia , Miostatina/sangue , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
11.
Circulation ; 125(23): 2844-53, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22586279

RESUMO

BACKGROUND: Heart failure is associated with impaired myocardial metabolism with a shift from fatty acids to glucose use for ATP generation. We hypothesized that cardiac accumulation of toxic lipid intermediates inhibits insulin signaling in advanced heart failure and that mechanical unloading of the failing myocardium corrects impaired cardiac metabolism. METHODS AND RESULTS: We analyzed the myocardium and serum of 61 patients with heart failure (body mass index, 26.5±5.1 kg/m(2); age, 51±12 years) obtained during left ventricular assist device implantation and at explantation (mean duration, 185±156 days) and from 9 control subjects. Systemic insulin resistance in heart failure was accompanied by decreased myocardial triglyceride and overall fatty acid content but increased toxic lipid intermediates, diacylglycerol, and ceramide. Increased membrane localization of protein kinase C isoforms, inhibitors of insulin signaling, and decreased activity of insulin signaling molecules Akt and Foxo were detectable in heart failure compared with control subjects. Left ventricular assist device implantation improved whole-body insulin resistance (homeostatic model of analysis-insulin resistance, 4.5±0.6-3.2±0.5; P<0.05) and decreased myocardial levels of diacylglycerol and ceramide, whereas triglyceride and fatty acid content remained unchanged. Improved activation of the insulin/phosphatidylinositol-3 kinase/Akt signaling cascade after left ventricular assist device implantation was confirmed by increased phosphorylation of Akt and Foxo, which was accompanied by decreased membrane localization of protein kinase C isoforms after left ventricular assist device implantation. CONCLUSIONS: Mechanical unloading after left ventricular assist device implantation corrects systemic and local metabolic derangements in advanced heart failure, leading to reduced myocardial levels of toxic lipid intermediates and improved cardiac insulin signaling.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Miocárdio/metabolismo , Adulto , Idoso , Linhagem Celular , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Estudos Retrospectivos , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo , Ultrassonografia
12.
Am J Physiol Endocrinol Metab ; 305(11): E1339-47, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085031

RESUMO

Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction. Whether heart LPL-knockout (hLPL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLPL0 mice, two different models were used to supply nonlipid energy. 1) hLPL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart; this cross-corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 mo of age, which leads to increased skeletal muscle production of lactate. hLPL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared with hearts from sedentary hLPL0 mice, hearts from trained hLPL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLPL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.


Assuntos
Metabolismo Energético/genética , Coração/fisiologia , Lipase Lipoproteica/genética , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Ecocardiografia , Transportador de Glucose Tipo 1/genética , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Especificidade de Órgãos/genética
13.
Front Cardiovasc Med ; 10: 1093576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260947

RESUMO

Objectives: Right ventricular (RV) failure remains a major concern in heart failure (HF) patients undergoing left ventricular assist device (LVAD) implantation. We aimed to measure the kinetic energy of blood in the RV outflow tract (KE-RVOT) - a new marker of RV global systolic function. We also aimed to assess the relationship of KE-RVOT to other echocardiographic parameters in all subjects and assess the relationship of KE-RVOT to hemodynamic parameters of RV performance in HF patients. Methods: Fifty-one subjects were prospectively enrolled into 4 groups (healthy controls, NYHA Class II, NYHA Class IV, LVAD patients) as follows: 11 healthy controls, 32 HF patients (8 NYHA Class II and 24 Class IV), and 8 patients with preexisting LVADs. The 24 Class IV HF patients included 21 pre-LVAD and 3 pre-transplant patients. Echocardiographic parameters of RV function (TAPSE, St', Et', IVA, MPI) and RV outflow color-Doppler images were recorded in all patients. Invasive hemodynamic parameters of RV function were collected in all Class IV HF patients. KE-RVOT was derived from color-Doppler imaging using a vector flow mapping proprietary software. Kruskal-Wallis test was performed for comparison of KE-RVOT in each group. Correlation between KE-RVOT and echocardiographic/hemodynamic parameters was assessed by linear regression analysis. Receiver operating characteristic curves for the ability of KE-RVOT to predict early phase RV failure were generated. Results: KE-RVOT (median ± IQR) was higher in healthy controls (55.10 [39.70 to 76.43] mW/m) than in the Class II HF group (22.23 [15.41 to 35.58] mW/m, p < 0.005). KE-RVOT was further reduced in the Class IV HF group (9.02 [5.33 to 11.94] mW/m, p < 0.05). KE-RVOT was lower in the LVAD group (25.03 [9.88 to 38.98] mW/m) than the healthy controls group (p < 0.005). KE-RVOT had significant correlation with all echocardiographic parameters and no correlation with invasive hemodynamic parameters. RV failure occurred in 12 patients who underwent LVAD implantation in the Class IV HF group (1 patient was not eligible due to death immediately after the LVAD implantation). KE-RVOT cut-off value for prediction of RV failure was 9.15 mW/m (sensitivity: 0.67, specificity: 0.75, AUC: 0.66). Conclusions: KE-RVOT, a novel noninvasive measure of RV function, strongly correlates with well-established echocardiographic markers of RV performance. KE-RVOT is the energy generated by RV wall contraction. Therefore, KE-RVOT may reflect global RV function. The utility of KE-RVOT in prediction of RV failure post LVAD implantation requires further study.

14.
J Heart Lung Transplant ; 42(9): 1223-1232, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098374

RESUMO

BACKGROUND: Reduced arterial pulsatility in continuous-flow left ventricular assist devices (CF-LVAD) patients has been implicated in clinical complications. Consequently, recent improvements in clinical outcomes have been attributed to the "artificial pulse" technology inherent to the HeartMate3 (HM3) LVAD. However, the effect of the "artificial pulse" on arterial flow, transmission of pulsatility into the microcirculation and its association with LVAD pump parameters is not known. METHODS: The local flow oscillation (pulsatility index, PI) of common carotid arteries (CCAs), middle cerebral arteries (MCAs) and central retinal arteries (CRAs-representing the microcirculation) were quantified by 2D-aligned, angle-corrected Doppler ultrasound in 148 participants: healthy controls, n = 32; heart failure (HF), n = 43; HeartMate II (HMII), n = 32; HM3, n = 41. RESULTS: In HM3 patients, 2D-Doppler PI in beats with "artificial pulse" and beats with "continuous-flow" was similar to that of HMII patients across the macro- and microcirculation. Additionally, peak systolic velocity did not differ between HM3 and HMII patients. Transmission of PI into the microcirculation was higher in both HM3 (during the beats with "artificial pulse") and in HMII patients compared with HF patients. LVAD pump speed was inversely associated with microvascular PI in HMII and HM3 (HMII, r2 = 0.51, p < 0.0001; HM3 "continuous-flow," r2 = 0.32, p = 0.0009; HM3 "artificial pulse," r2 = 0.23, p = 0.007), while LVAD pump PI was only associated with microcirculatory PI in HMII patients. CONCLUSIONS: The "artificial pulse" of the HM3 is detectable in the macro- and microcirculation but without creating a significant alteration in PI compared with HMII patients. Increased transmission of pulsatility and the association between pump speed and PI in the microcirculation indicate that the future clinical care of HM3 patients may involve individualized pump settings according to the microcirculatory PI in specific end-organs.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Humanos , Microcirculação , Insuficiência Cardíaca/cirurgia , Frequência Cardíaca , Artéria Cerebral Média
15.
J Heart Lung Transplant ; 40(8): 786-793, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34134913

RESUMO

BACKGROUND: While rates of stroke have declined with the HeartMate3 (HM3) continuous- flow (CF) left ventricular assist device (LVAD), the impact of non-pulsatile flow and artificial pulse physiology on cerebrovascular function is not known. We hypothesized that improved hemodynamics and artificial pulse physiology of HM3 patients would augment cerebrovascular metabolic reactivity (CVR) compared with HeartMate II (HMII) CF-LVAD and heart failure (HF) patients. METHODS: Mean, peak systolic and diastolic flow velocities (MFV, PSV, MinFV, respectively) and cerebral pulsatility index were determined in the middle cerebral artery (MCA) before and after a 30 sec breath-hold challenge in 90 participants: 24 healthy controls; 30 HF, 15 HMII, and 21 HM3 patients. RESULTS: In HM3 patients, breath-holding increased MFV (Δ8 ± 10 cm/sec, p < .0001 vs baseline) to levels similar to HF patients (Δ9 ± 8 cm/sec, p > .05), higher than HMII patients (Δ2 ± 8 cm/sec, p < .01) but lower than healthy controls (Δ13 ± 7 cm/sec, p < .05). CF-LVAD altered the proportion of systolic and diastolic flow responses as reflected by a differential cerebral pulsatility index (p = .03). Baseline MFV was not related to CVR (r2 = 0.0008, p = .81). However, CF-LVAD pump speed was strongly inversely associated with CVR in HM II (r2 = 0.51, p = .003) but not HM3 patients (r2 = 0.01, p = .65). CONCLUSIONS: Compared with HMII, HM3 patients have a significantly improved CVR. However, CVR remains lower in HM3 and HF patients than in healthy controls, therefore suggesting that changes in cerebral hemodynamics are not reversed by CF-LVAD therapy. Further research on the mechanisms and the long-term impact of altered cerebral hemodynamics in this unique patient population are warranted.


Assuntos
Circulação Cerebrovascular/fisiologia , Insuficiência Cardíaca/fisiopatologia , Coração Auxiliar , Artéria Cerebral Média/fisiopatologia , Fluxo Pulsátil/fisiologia , Ultrassonografia Doppler Transcraniana/métodos , Vasodilatação/fisiologia , Diástole , Desenho de Equipamento , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/cirurgia , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia , Volume Sistólico/fisiologia
16.
JCI Insight ; 6(23)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34710060

RESUMO

Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.


Assuntos
Fibrilação Atrial/terapia , Cardiomiopatias/terapia , Mitocôndrias Cardíacas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Animais , Fibrilação Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatias/metabolismo , Catalase/genética , Catalase/metabolismo , Cruzamentos Genéticos , Feminino , Átrios do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
J Clin Invest ; 128(6): 2600-2612, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589839

RESUMO

Thiazolidinediones (TZDs) are PPARγ agonists with potent insulin-sensitizing effects. However, their use has been curtailed by substantial adverse effects on weight, bone, heart, and hemodynamic balance. TZDs induce the deacetylation of PPARγ on K268 and K293 to cause the browning of white adipocytes. Here, we show that targeted PPARγ mutations resulting in constitutive deacetylation (K268R/K293R, 2KR) increased energy expenditure and protected from visceral adiposity and diet-induced obesity by augmenting brown remodeling of white adipose tissues. Strikingly, when 2KR mice were treated with rosiglitazone, they maintained the insulin-sensitizing, glucose-lowering response to TZDs, while displaying little, if any, adverse effects on fat deposition, bone density, fluid retention, and cardiac hypertrophy. Thus, deacetylation appears to fulfill the goal of dissociating the metabolic benefits of PPARγ activation from its adverse effects. Strategies to leverage PPARγ deacetylation may lead to the design of safer, more effective agonists of this nuclear receptor in the treatment of metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Peso Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Obesidade/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Acetilação/efeitos dos fármacos , Tecido Adiposo Branco/patologia , Animais , Peso Corporal/genética , Metabolismo Energético/genética , Feminino , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , Rosiglitazona/farmacologia
18.
J Heart Lung Transplant ; 37(3): 409-417, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28789823

RESUMO

BACKGROUND: Exosomes are cell-derived circulating vesicles that play an important role in cell-cell communication. Exosomes are actively assembled and carry messenger RNAs, microRNAs and proteins. The "gold standard" for cardiac allograft surveillance is endomyocardial biopsy (EMB), an invasive technique with a distinct complication profile. The development of novel, non-invasive methods for the early diagnosis of allograft rejection is warranted. We hypothesized that the exosomal proteome is altered in acute rejection, allowing for a distinction between non-rejection and rejection episodes. METHODS: Serum samples were collected from heart transplant (HTx) recipients with no rejection, acute cellular rejection (ACR) and antibody-mediated rejection (AMR). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of serum exosome was performed using a mass spectrometer (Orbitrap Fusion Tribrid). RESULTS: Principal component analysis (PCA) revealed a clustering of 3 groups: (1) control and heart failure (HF); (2) HTx without rejection; and (3) ACR and AMR. A total of 45 proteins were identified that could distinguish between groups (q < 0.05). Comparison of serum exosomal proteins from control, HF and non-rejection HTx revealed 17 differentially expressed proteins in at least 1 group (q < 0.05). Finally, comparisons of non-rejection HTx, ACR and AMR serum exosomes revealed 15 differentially expressed proteins in at least 1 group (q < 0.05). Of these 15 proteins, 8 proteins are known to play a role in the immune response. Of note, the majority of proteins identified were associated with complement activation, adaptive immunity such as immunoglobulin components and coagulation. CONCLUSIONS: Characterizing of circulating exosomal proteome in different cardiac disease states reveals unique protein expression patterns indicative of the respective pathologies. Our data suggest that HTx and allograft rejection alter the circulating exosomal protein content. Exosomal protein analysis could be a novel approach to detect and monitor acute transplant rejection and lead to the development of predictive and prognostic biomarkers.


Assuntos
Exossomos , Rejeição de Enxerto/sangue , Rejeição de Enxerto/diagnóstico , Transplante de Coração , Aloenxertos , Humanos
19.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469091

RESUMO

Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long-chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long-chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.

20.
J Heart Lung Transplant ; 35(9): 1085-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26899764

RESUMO

BACKGROUND: Left ventricular assist devices are increasingly being used in patients with advanced heart failure as both destination therapy and bridge to transplant. We aimed to identify histomorphometric, structural and inflammatory changes after pulsatile- and continuous-flow left ventricular assist device placement. METHODS: Clinical and echocardiographic data were collected from medical records. Aortic wall diameter, cellularity and inflammation were assessed by immunohistochemistry on aortic tissue collected at left ventricular assist device placement and at explantation during heart transplantation. Expression of adhesion molecules was quantified by Western blot. RESULTS: Decellularization of the aortic tunica media was observed in patients receiving continuous-flow support. Both device types showed an increased inflammatory response after left ventricular assist device placement with variable T-cell and macrophage accumulations and increased expression of vascular E-selectin, ICAM and VCAM in the aortic wall. CONCLUSIONS: Left ventricular assist device implantation is associated with distinct vascular derangements with development of vascular inflammation. These changes are pronounced in patients on continuous-flow left ventricular assist and associated with aortic media decellularization. The present findings help to explain the progressive aortic root dilation and vascular dysfunction in patients after continuous-flow device placement.


Assuntos
Coração Auxiliar , Aorta , Insuficiência Cardíaca , Humanos , Inflamação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA