Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 681-697, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982672

RESUMO

Predicting human motion from historical pose sequence is crucial for a machine to succeed in intelligent interactions with humans. One aspect that has been obviated so far, is the fact that how we represent the skeletal pose has a critical impact on the prediction results. Yet there is no effort that investigates across different pose representation schemes. We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task. Moreover, recent approaches build upon off-the-shelf RNN units for motion prediction. These approaches process input pose sequence sequentially and inherently have difficulties in capturing long-term dependencies. In this paper, we propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction which simultaneously models local motion contexts and a global context. We further explore a geodesic loss and a forward kinematics loss for the motion prediction task, which have more geometric significance than the widely employed L2 loss. Interestingly, we applied our method to a range of articulate objects including human, fish, and mouse. Empirical results show that our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency, such as retaining natural human-like motions over 50 seconds predictions. Our codes are released.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Animais , Camundongos , Movimento (Física)
2.
IEEE Trans Neural Netw Learn Syst ; 34(2): 799-813, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34406948

RESUMO

While the celebrated graph neural networks (GNNs) yield effective representations for individual nodes of a graph, there has been relatively less success in extending to the task of graph similarity learning. Recent work on graph similarity learning has considered either global-level graph-graph interactions or low-level node-node interactions, however, ignoring the rich cross-level interactions (e.g., between each node of one graph and the other whole graph). In this article, we propose a multilevel graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects in an end-to-end fashion. In particular, the proposed MGMN consists of a node-graph matching network (NGMN) for effectively learning cross-level interactions between each node of one graph and the other whole graph, and a siamese GNN to learn global-level interactions between two input graphs. Furthermore, to compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks with different sizes in order to evaluate the effectiveness and robustness of our models. Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks. Compared with previous work, multilevel graph matching network (MGMN) also exhibits stronger robustness as the sizes of the two input graphs increase.

3.
IEEE Trans Cybern ; 52(5): 3745-3756, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32946405

RESUMO

Fuzzing is a technique of finding bugs by executing a target program recurrently with a large number of abnormal inputs. Most of the coverage-based fuzzers consider all parts of a program equally and pay too much attention to how to improve the code coverage. It is inefficient as the vulnerable code only takes a tiny fraction of the entire code. In this article, we design and implement an evolutionary fuzzing framework called V-Fuzz, which aims to find bugs efficiently and quickly in limited time for binary programs. V-Fuzz consists of two main components: 1) a vulnerability prediction model and 2) a vulnerability-oriented evolutionary fuzzer. Given a binary program to V-Fuzz, the vulnerability prediction model will give a prior estimation on which parts of a program are more likely to be vulnerable. Then, the fuzzer leverages an evolutionary algorithm to generate inputs which are more likely to arrive at the vulnerable locations, guided by the vulnerability prediction result. The experimental results demonstrate that V-Fuzz can find bugs efficiently with the assistance of vulnerability prediction. Moreover, V-Fuzz has discovered ten common vulnerabilities and exposures (CVEs), and three of them are newly discovered.


Assuntos
Algoritmos
4.
IEEE Trans Cybern ; 52(7): 6095-6108, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34033564

RESUMO

Following the principle of to set one's own spear against one's own shield, we study how to design adversarial completely automated public turing test to tell computers and humans apart (CAPTCHA) in this article. We first identify the similarity and difference between adversarial CAPTCHA generation and existing hot adversarial example (image) generation research. Then, we propose a framework for text-based and image-based adversarial CAPTCHA generation on top of state-of-the-art adversarial image generation techniques. Finally, we design and implement an adversarial CAPTCHA generation and evaluation system, called aCAPTCHA, which integrates 12 image preprocessing techniques, nine CAPTCHA attacks, four baseline adversarial CAPTCHA generation methods, and eight new adversarial CAPTCHA generation methods. To examine the performance of aCAPTCHA, extensive security and usability evaluations are conducted. The results demonstrate that the generated adversarial CAPTCHAs can significantly improve the security of normal CAPTCHAs while maintaining similar usability. To facilitate the CAPTCHA security research, we also open source the aCAPTCHA system, including the source code, trained models, datasets, and the usability evaluation interfaces.


Assuntos
Software , Humanos
5.
IEEE Trans Cybern ; 51(10): 5198-5211, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31331902

RESUMO

Rare classes are usually hidden in an imbalanced dataset with the majority of the data examples from major classes. Rare-class mining (RCM) aims at extracting all the data examples belonging to rare classes. Most of the existing approaches for RCM require a certain amount of labeled data examples as input. However, they are ineffective in practice since requesting label information from domain experts is time consuming and human-labor extensive. Thus, we investigate the unsupervised RCM problem, which to the best of our knowledge is the first such attempt. To this end, we propose an efficient algorithm called Fast-RCM for unsupervised RCM, which has an approximately linear time complexity with respect to data size and data dimensionality. Given an unlabeled dataset, Fast-RCM mines out the rare class by first building a rare tree for the input dataset and then extracting data examples of the rare classes based on this rare tree. Compared with the existing approaches which have quadric or even cubic time complexity, Fast-RCM is much faster and can be extended to large-scale datasets. The experimental evaluation on both synthetic and real-world datasets demonstrate that our algorithm can effectively and efficiently extract the rare classes from an unlabeled dataset under the unsupervised settings, and is approximately five times faster than that of the state-of-the-art methods.

6.
IEEE Trans Image Process ; 30: 8410-8425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34596539

RESUMO

This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in many fashion related applications, such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings, thus measure the fine-grained similarity in the corresponding space. The proposed ASEN is comprised of a global branch and a local branch. The global branch takes the whole image as input to extract features from a global perspective, while the local branch takes as input the zoomed-in region-of-interest (RoI) w.r.t. the specified attribute thus able to extract more fine-grained features. As the global branch and the local branch extract the features from different perspectives, they are complementary to each other. Additionally, in each branch, two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention, are integrated to make ASEN be able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on three fashion-related datasets, i.e., FashionAI, DARN, and DeepFashion, show the effectiveness of ASEN for fine-grained fashion similarity prediction and its potential for fashion reranking. Code and data are available at https://github.com/maryeon/asenpp.

7.
NPJ Biofilms Microbiomes ; 7(1): 58, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244520

RESUMO

The low viability during gastrointestinal transit and poor mucoadhesion considerably limits the effectiveness of Ligilactobacillus salivarius Li01 (Li01) in regulating gut microbiota and alleviating inflammatory bowel disease (IBD). In this study, a delivery system was designed through layer-by-layer (LbL) encapsulating a single Li01cell with chitosan and alginate. The layers were strengthened by cross-linking to form a firm and mucoadhesive shell (~10 nm thickness) covering the bacterial cell. The LbL Li01 displayed improved viability under simulated gastrointestinal conditions and mucoadhesive function. Almost no cells could be detected among the free Li01 after 2 h incubation in digestive fluids, while for LbL Li01, the total reduction was around 3 log CFU/mL and the viable number of cells remained above 6 log CFU/mL. Besides, a 5-fold increase in the value of rupture length and a two-fold increase in the number of peaks were found in the (bacteria-mucin) adhesion curves of LbL Li01, compared to those of free Li01. Oral administration with LbL Li01 on colitis mice facilitated intestinal barrier recovery and restoration of the gut microbiota. The improved functionality of Li01 by LbL encapsulation could increase the potential for the probiotic to be used in clinical applications to treat IBD; this should be explored in future studies.


Assuntos
Técnicas Bacteriológicas , Lactobacillus/fisiologia , Animais , Aderência Bacteriana , Biomarcadores , Linhagem Celular , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Viabilidade Microbiana , Probióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA