Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298912

RESUMO

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Assuntos
Animais Selvagens/virologia , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças , Mamíferos/virologia , Viroma , Animais , China , Filogenia , Zoonoses
2.
Nature ; 610(7930): 154-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952712

RESUMO

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudência
3.
EMBO J ; 42(10): e112408, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37009655

RESUMO

The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.


Assuntos
Neoplasias da Mama , RNA Circular , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , RNA Circular/genética , RNA Circular/metabolismo
4.
Nature ; 593(7858): 211-217, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981050

RESUMO

Advanced beyond-silicon electronic technology requires both channel materials and also ultralow-resistance contacts to be discovered1,2. Atomically thin two-dimensional semiconductors have great potential for realizing high-performance electronic devices1,3. However, owing to metal-induced gap states (MIGS)4-7, energy barriers at the metal-semiconductor interface-which fundamentally lead to high contact resistance and poor current-delivery capability-have constrained the improvement of two-dimensional semiconductor transistors so far2,8,9. Here we report ohmic contact between semimetallic bismuth and semiconducting monolayer transition metal dichalcogenides (TMDs) where the MIGS are sufficiently suppressed and degenerate states in the TMD are spontaneously formed in contact with bismuth. Through this approach, we achieve zero Schottky barrier height, a contact resistance of 123 ohm micrometres and an on-state current density of 1,135 microamps per micrometre on monolayer MoS2; these two values are, to the best of our knowledge, the lowest and highest yet recorded, respectively. We also demonstrate that excellent ohmic contacts can be formed on various monolayer semiconductors, including MoS2, WS2 and WSe2. Our reported contact resistances are a substantial improvement for two-dimensional semiconductors, and approach the quantum limit. This technology unveils the potential of high-performance monolayer transistors that are on par with state-of-the-art three-dimensional semiconductors, enabling further device downscaling and extending Moore's law.

5.
Nature ; 595(7869): 713-717, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192736

RESUMO

After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain1. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave2. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , COVID-19/epidemiologia , COVID-19/prevenção & controle , Europa (Continente)/epidemiologia , Genoma Viral/genética , Humanos , Incidência , Locomoção , Filogenia , Filogeografia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Fatores de Tempo , Viagem/estatística & dados numéricos
6.
EMBO J ; 41(18): e110521, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35929182

RESUMO

Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1-SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus-derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA-degrading nuclease 1 (HvSDN1) and impedes HvSDN1-catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1-HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1-carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D ), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1-catalyzed vsiRNA degradation and suggest new ways for engineering BYDV-resistant crops.


Assuntos
Hordeum , Antivirais , Hordeum/genética , Hordeum/metabolismo , Doenças das Plantas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
7.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142767

RESUMO

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Assuntos
Ácido Glutâmico , Transmissão Sináptica , Camundongos , Animais , Ácido Glutâmico/metabolismo , Cinética , Neurônios/fisiologia , Sinapses/fisiologia
8.
Dev Biol ; 511: 84-91, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648924

RESUMO

We established a normal embryonic development table for the Anji salamander Hynobius amjiensis, a critically endangered tailed amphibian of the family Hynobiidae with a very limited distribution in East China, following the standards set by the early developmental table of vertebrates. Put together 32 embryonic stages for the Anji salamander was defined. The total embryonic period from oviposition to hatching is approximately 30 days at 9 °C. Stages 1-16 represent early development from cleavage to neurulation. Stages 17-32 represent organogenesis documenting later developmental events such as tail, gill, and limb formation, and hatching (Stage 32). We provided a detailed description of the external morphology and color changes of the head, trunk, limbs, tail, external gills, and balancers at various stages from egg-laying to hatching. We also described several cases of abnormal embryonic development. The establishment of the embryonic development table in H. amjiensis contributes to better understanding of the ontogeny in tailed amphibians, distinguishing closely related species, and identifying abnormal embryonic amphibians.


Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Urodelos , Animais , Urodelos/embriologia , Desenvolvimento Embrionário/fisiologia , Embrião não Mamífero/embriologia , Feminino , Organogênese/fisiologia , Cauda/embriologia , China
9.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243701

RESUMO

MOTIVATION: Advancements in high-throughput genomic sequencing are delivering genomic pathogen data at an unprecedented rate, positioning statistical phylogenetics as a critical tool to monitor infectious diseases globally. This rapid growth spurs the need for efficient inference techniques, such as Hamiltonian Monte Carlo (HMC) in a Bayesian framework, to estimate parameters of these phylogenetic models where the dimensions of the parameters increase with the number of sequences N. HMC requires repeated calculation of the gradient of the data log-likelihood with respect to (wrt) all branch-length-specific (BLS) parameters that traditionally takes O(N2) operations using the standard pruning algorithm. A recent study proposes an approach to calculate this gradient in O(N), enabling researchers to take advantage of gradient-based samplers such as HMC. The CPU implementation of this approach makes the calculation of the gradient computationally tractable for nucleotide-based models but falls short in performance for larger state-space size models, such as Markov-modulated and codon models. Here, we describe novel massively parallel algorithms to calculate the gradient of the log-likelihood wrt all BLS parameters that take advantage of graphics processing units (GPUs) and result in many fold higher speedups over previous CPU implementations. RESULTS: We benchmark these GPU algorithms on three computing systems using three evolutionary inference examples exploring complete genomes from 997 dengue viruses, 62 carnivore mitochondria and 49 yeasts, and observe a >128-fold speedup over the CPU implementation for codon-based models and >8-fold speedup for nucleotide-based models. As a practical demonstration, we also estimate the timing of the first introduction of West Nile virus into the continental Unites States under a codon model with a relaxed molecular clock from 104 full viral genomes, an inference task previously intractable. AVAILABILITY AND IMPLEMENTATION: We provide an implementation of our GPU algorithms in BEAGLE v4.0.0 (https://github.com/beagle-dev/beagle-lib), an open-source library for statistical phylogenetics that enables parallel calculations on multi-core CPUs and GPUs. We employ a BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (https://github.com/beast-dev/beast-mcmc).


Assuntos
Algoritmos , Software , Filogenia , Teorema de Bayes , Códon , Nucleotídeos
10.
Syst Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712512

RESUMO

Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models that extend common continuous-time Markov chain models into a richer class of processes capable of capturing a wider variety of substitution dynamics. As these random-effects substitution models often require many more parameters than their usual counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient approach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model parameters. We demonstrate that this approximate gradient enables scaling of sampling-based inference, namely Bayesian inference via Hamiltonian Monte Carlo, under random-effects substitution models across large trees and state-spaces. Applied to a dataset of 583 SARS-CoV-2 sequences, an HKY model with random-effects shows strong signals of nonreversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2) sequences between 14 regions, a random-effects phylogeographic substitution model infers that air travel volume adequately predicts almost all dispersal rates. A random-effects state-dependent substitution model reveals no evidence for an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random-effects substitution models can accommodate both negligible and radical departures from the underlying base substitution model. We show that our gradient-based inference approach is over an order of magnitude more time efficient than conventional approaches.

11.
Nature ; 566(7744): 368-372, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692651

RESUMO

The mechanical and electronic properties of two-dimensional materials make them promising for use in flexible electronics1-3. Their atomic thickness and large-scale synthesis capability could enable the development of 'smart skin'1,3-5, which could transform ordinary objects into an intelligent distributed sensor network6. However, although many important components of such a distributed electronic system have already been demonstrated (for example, transistors, sensors and memory devices based on two-dimensional materials1,2,4,7), an efficient, flexible and always-on energy-harvesting solution, which is indispensable for self-powered systems, is still missing. Electromagnetic radiation from Wi-Fi systems operating at 2.4 and 5.9 gigahertz8 is becoming increasingly ubiquitous and would be ideal to harvest for powering future distributed electronics. However, the high frequencies used for Wi-Fi communications have remained elusive to radiofrequency harvesters (that is, rectennas) made of flexible semiconductors owing to their limited transport properties9-12. Here we demonstrate an atomically thin and flexible rectenna based on a MoS2 semiconducting-metallic-phase heterojunction with a cutoff frequency of 10 gigahertz, which represents an improvement in speed of roughly one order of magnitude compared with current state-of-the-art flexible rectifiers9-12. This flexible MoS2-based rectifier operates up to the X-band8 (8 to 12 gigahertz) and covers most of the unlicensed industrial, scientific and medical radio band, including the Wi-Fi channels. By integrating the ultrafast MoS2 rectifier with a flexible Wi-Fi-band antenna, we fabricate a fully flexible and integrated rectenna that achieves wireless energy harvesting of electromagnetic radiation in the Wi-Fi band with zero external bias (battery-free). Moreover, our MoS2 rectifier acts as a flexible mixer, realizing frequency conversion beyond 10 gigahertz. This work provides a universal energy-harvesting building block that can be integrated with various flexible electronic systems.

12.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675606

RESUMO

Following a duplication, the resulting paralogs tend to diverge. While mutation and natural selection can accelerate this process, they can also slow it. Here, we quantify the paralog homogenization that is caused by point mutations and interlocus gene conversion (IGC). Among 164 duplicated teleost genes, the median percentage of postduplication codon substitutions that arise from IGC rather than point mutation is estimated to be between 7% and 8%. By differentiating between the nonsynonymous codon substitutions that homogenize the protein sequences of paralogs and the nonhomogenizing nonsynonymous substitutions, we estimate the homogenizing nonsynonymous rates to be higher for 163 of the 164 teleost data sets as well as for all 14 data sets of duplicated yeast ribosomal protein-coding genes that we consider. For all 14 yeast data sets, the estimated homogenizing nonsynonymous rates exceed the synonymous rates.


Assuntos
Conversão Gênica , Magnoliopsida , Saccharomyces cerevisiae , Sequência de Aminoácidos , Genes Duplicados , Seleção Genética
13.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950885

RESUMO

Molecular clock models undergird modern methods of divergence-time estimation. Local clock models propose that the rate of molecular evolution is constant within phylogenetic subtrees. Current local clock inference procedures exhibit one or more weaknesses, namely they achieve limited scalability to trees with large numbers of taxa, impose model misspecification, or require a priori knowledge of the existence and location of clocks. To overcome these challenges, we present an autocorrelated, Bayesian model of heritable clock rate evolution that leverages heavy-tailed priors with mean zero to shrink increments of change between branch-specific clocks. We further develop an efficient Hamiltonian Monte Carlo sampler that exploits closed form gradient computations to scale our model to large trees. Inference under our shrinkage clock exhibits a speed-up compared to the popular random local clock when estimating branch-specific clock rates on a variety of simulated datasets. This speed-up increases with the size of the problem. We further show our shrinkage clock recovers known local clocks within a rodent and mammalian phylogeny. Finally, in a problem that once appeared computationally impractical, we investigate the heritable clock structure of various surface glycoproteins of influenza A virus in the absence of prior knowledge about clock placement. We implement our shrinkage clock and make it publicly available in the BEAST software package.


Assuntos
Evolução Molecular , Mamíferos , Animais , Filogenia , Teorema de Bayes , Fatores de Tempo , Modelos Genéticos
14.
Br J Cancer ; 130(10): 1635-1646, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38454165

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a complex cancer influenced by various factors. This study explores the use of single-cell Raman spectroscopy as a potential diagnostic tool for investigating biomolecular changes associated with NPC carcinogenesis. METHODS: Seven NPC cell lines, one immortalised nasopharyngeal epithelial cell line, six nasopharyngeal mucosa tissues and seven NPC tissue samples were analysed by performing confocal Raman spectroscopic measurements and imaging. The single-cell Raman spectral dataset was used to quantify relevant biomolecules and build machine learning classification models. Metabolomic profiles were investigated using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). RESULTS: By generating a metabolic map of seven NPC cell lines, we identified an interplay of altered metabolic processes involving nucleic acids, amino acids, lipids and sugars. The results from spatially resolved Raman maps and UPLC-MS/MS metabolomics were consistent, revealing an increase of unsaturated fatty acids in cancer cells, particularly in highly metastatic 5-8F and poorly differentiated CNE2 cells. The classification model achieved a nearly perfect classification when identifying NPC and non-NPC cells with an ROC-AUC of 0.99 and a value of 0.97 when identifying 13 tissue samples. CONCLUSION: This study unveils a complex interplay of metabolic network and highlights the potential roles of unsaturated fatty acids in NPC progression and metastasis. This renders further research to provide deeper insights into NPC pathogenesis, identify new metabolic targets and improve the efficacy of targeted therapies in NPC. Artificial intelligence-aided analysis of single-cell Raman spectra has achieved high accuracies in the classification of both cancer cells and patient tissues, paving the way for a simple, less invasive and accurate diagnostic test.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Inteligência Artificial , Análise de Célula Única/métodos , Metabolômica/métodos , Metaboloma , Espectrometria de Massas em Tandem/métodos , Aprendizado de Máquina
15.
J Virol ; 97(1): e0109122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475767

RESUMO

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Assuntos
Arbovírus , Genoma Viral , Filogenia , Animais , Humanos , Camundongos , Arbovírus/genética , China/epidemiologia , Genômica , Gado/virologia
16.
Hepatology ; 77(1): 109-123, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043976

RESUMO

BACKGROUND AND AIMS: Monocarboxylate transporter (MCT) 4 is a high-affinity lactate transporter that is primarily involved in the maintenance of intracellular pH homeostasis and highly expressed in different tumors. However, the role of MCT4 in modulating immune responses against HCC remains unknown. APPROACH AND RESULTS: In this study, we demonstrated that MCT4 was overexpressed in HCC, which was associated with poor prognosis in patients. Genetic or pharmacological inhibition of MCT4 using VB124 (a highly potent MCT4 inhibitor) suppressed HCC tumor growth in immunocompetent mice model by enhancing CD8 + T cell infiltration and cytotoxicity. Such improved immunotherapy response by MCT4 targeting was due to combined consequences characterized by the alleviated acidification of tumor microenvironment and elevated the chemokine (C-X-C motif) ligand (CXCL) 9/CXCL10 secretion induced by reactive oxygen species/NF-κB signaling pathway. Combining MCT4 inhibition improved the therapeutic benefit of anti-programmed cell death 1 immunotherapy in HCC and prolonged mice survival. Moreover, higher MCT4 expression was observed in tumor tissues from nonresponder patients with HCC receiving neoadjuvant therapy with toripalimab. CONCLUSIONS: Our results revealed that lactate exportation by MCT4 has a tumor-intrinsic function in generating an immunosuppressive HCC environment and demonstrated the proof of the concept of targeting MCT4 in tailoring HCC immunotherapeutic approaches.


Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Transportadores de Ácidos Monocarboxílicos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Ácido Láctico/metabolismo , Neoplasias Hepáticas/terapia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Microambiente Tumoral , Humanos
17.
Invest New Drugs ; 42(3): 309-317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700579

RESUMO

BACKGROUND: Platinum-based doublet chemotherapy is commonly used in the treatment of non-small cell lung cancer (NSCLC). A growing body of evidence indicates that incorporating antiangiogenic agents into platinum-based chemotherapy may enhance the survival outcomes for NSCLC patients. However, the optimal administration protocol for intravenous recombinant human endostatin (rh-endostatin), an antiangiogenic agent, remains uncertain at present. AIM: This study aims to investigate the efficacy and safety of 5-d continuous intravenous infusion of rh-endostatin in combination with chemotherapy for patients with advanced NSCLC. The predictive biomarkers for this treatment regimen were further probed. METHODS: This prospective, single-arm multicenter study enrolled a total of 48 patients with advanced NSCLC who were histologically or cytologically confirmed but had not received any prior treatment from January 2021 to December 2022. Prior to the chemotherapy, these patients received a continuous intravenous infusion of rh-endostatin (210 mg) over a period of 120 h, using an infusion pump. The chemotherapy regimen included a combination of platinum with either pemetrexed or paclitaxel, given in 21-day cycles. The primary endpoint of the study was median progression-free survival (mPFS), and the secondary endpoints included median overall survival (mOS), objective response rate (ORR), disease control rate (DCR), and assessment of adverse events (AEs). RESULTS: The mPFS was 6.5 months (95% confidence interval (CI): 3.8-9.1 m) while the mOS was 12.3 months (95% CI: 7.6-18.5 m). The ORR and DCR was 52.1% and 75.0%, respectively. Leukopenia (52.1%), anemia (33.3%), and thrombocytopenia (20.8%) were the most common adverse effects and these toxicities were deemed acceptable and manageable. In addition, a correlation was noted between elevated serum carcinoembryonic antigen (CEA) levels and decreased PFS and OS. CONCLUSIONS: The incorporation of a 5-day continuous intravenous infusion of rh-endostatin into platinum-based doublet chemotherapy has demonstrated both safety and efficacy in the treatment of advanced NSCLC. Furthermore, the baseline serum levels of CEA may potentially function as a predictor for the efficacy of rh-endostatin when combined with chemotherapy in NSCLC patients. CLINICALTRIALS: GOV: NCT05574998.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Neoplasias Pulmonares , Paclitaxel , Pemetrexede , Proteínas Recombinantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Endostatinas/administração & dosagem , Endostatinas/efeitos adversos , Endostatinas/uso terapêutico , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Infusões Intravenosas , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Estudos Prospectivos , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Paclitaxel/uso terapêutico , Pemetrexede/administração & dosagem , Pemetrexede/efeitos adversos , Pemetrexede/uso terapêutico , Adulto , Intervalo Livre de Progressão
18.
J Exp Bot ; 75(7): 1903-1918, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37856192

RESUMO

The plant cuticle is an important protective barrier on the plant surface, constructed mainly by polymerized cutin matrix and a complex wax mixture. Although the pathway of plant cuticle biosynthesis has been clarified, knowledge of the transcriptional regulation network underlying fruit cuticle formation remains limited. In the present work, we discovered that tomato fruits of the NAC transcription factor SlNOR-like1 knockout mutants (nor-like1) produced by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] displayed reduced cutin deposition and cuticle thickness, with a microcracking phenotype, while wax accumulation was promoted. Further research revealed that SlNOR-like1 promotes cutin deposition by binding to the promoters of glycerol-3-phosphate acyltransferase6 (SlGPAT6; a key gene for cutin monomer formation) and CUTIN DEFICIENT2 (SlCD2; a positive regulator of cutin production) to activate their expression. Meanwhile, SlNOR-like1 inhibits wax accumulation, acting as a transcriptional repressor by targeting wax biosynthesis, and transport-related genes 3-ketoacyl-CoA synthase1 (SlKCS1), ECERIFERUM 1-2 (SlCER1-2), SlWAX2, and glycosylphosphatidylinositol-anchored lipid transfer protein 1-like (SlLTPG1-like). In conclusion, SlNOR-like1 executes a dual regulatory effect on tomato fruit cuticle development. Our results provide a new model for the transcriptional regulation of fruit cuticle formation.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Ceras/metabolismo
19.
Opt Lett ; 49(8): 1961-1964, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621051

RESUMO

For optical wireless communication systems, mechanical beam steering struggles to timely switch between multiple users or search for moving users. Here we demonstrate a fast-beam-switching optical phased array (OPA) for agile wireless communication networks. For point-to-multi-point (P2MP) scenarios, a setup of OPA-based fast beam switching between two aligned receivers was developed. A loss-free image transmission experiment was used to demonstrate the stability of switching. Furthermore, we have developed an approach to using the fast-switching OPA to follow the trajectory of moving objects so as to help enable agile random-access switching between moving objects. These results could help offer fast switching and reconfiguration for indoor wireless optical communications.

20.
Stem Cells ; 41(2): 153-168, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573461

RESUMO

Mesenchymal stem cells (MSCs) have been demonstrated to protect against fatty liver diseases, but the mechanism is still not clear. Menstrual blood-derived endometrial stem cells (MenSCs) are a substantial population of MSCs that can be obtained in a noninvasive manner. In the present study, we investigated the therapeutic effects and underlying mechanisms of MenSC transplantation in mouse models of diet-induced nonalcoholic fatty liver disease (NAFLD). The results revealed that MenSCs markedly promoted hepatic glycogen storage and attenuated lipid accumulation after transplantation. We further identified Rnf186 as a novel regulator involved in MenSC-based therapy for NAFLD mice. Rnf186 deficiency substantially inhibited high-fat diet-induced insulin resistance and abnormal hepatic glucose and lipid metabolism in mice. Mechanistically, Rnf186 regulated glucose and lipid metabolism through the AMPK-mTOR pathway. More importantly, hepatocyte growth factor (HGF) is identified as the key functional cytokine secreted by MenSCs and decreases the expression of hepatic Rnf186. HGF deficient MenSCs cannot attenuate glucose and lipid accumulation after transplantation in NAFLD mice. Collectively, our results provide preliminary evidence for the protective roles of HGF secreted by MenSCs in fatty liver diseases through downregulation of hepatic Rnf186 and suggest that MenSCs or Rnf186 may be an alternative therapeutic approach/target for the treatment of NAFLD.


Assuntos
Endométrio , Fator de Crescimento de Hepatócito , Células-Tronco Mesenquimais , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proliferação de Células , Regulação para Baixo , Glucose/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Lipídeos , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Menstruação/sangue , Menstruação/genética , Menstruação/metabolismo , Endométrio/citologia , Endométrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA